Пеноплекс характеристика теплопроводность: Пеноплекс технические характеристики, свойства и применение + Видео

Теплопроводность Пеноплекса и другие технические характеристики материала: видео и фото

Что представляет собой утеплитель пеноплекс, какая у него теплопроводность и какими вообще свойствами он обладает? Мне часто приходится работать с этим материалом, поэтому я готов ответить на поставленные вопросы. Кроме того, приведу вам технические характеристики данного утеплителя, и расскажу в каких случаях имеет смысл его применять.

На фото пеноплекс – универсальный и эффективный полимерный утеплитель от отечественного производителя

На фото пеноплекс – универсальный и эффективный полимерный утеплитель от отечественного производителя

Содержание

Что представляет собой пеноплекс

Характеристики

Сравним характеристики пеноплекса и пенополистирола:

ПараметрыПеноплексПенополистирол
Коэффициент теплопроводности, Вт/м·ºК0,030,036-0,050
Водопоглощение за сутки, % от объема0,22
Плотность, кг/м328-4515-35
Прочность на сжатие, Мпа (10% деформации)0,25-0,50,05-0,2

По теплопроводности и прочности экструзионный пенополистирол выигрышно смотрится не только по сравнению с пенопластом, но и многими другими материалами, такими как минеральная вата.

Сравнение теплопроводности экструзионного пенопласта с другими материалами

Сравнение теплопроводности экструзионного пенопласта с другими материалами

Как вы видите, технические характеристики пеноплекса более высокие.

Общие сведения

Прежде всего давайте разберемся что такое пеноплекс. Итак, это материал представляет собой экструдированный (экструзионный) пенополистирол.

Надо сказать, что в нашей стране принято называть пеноплексом любой экструдированный пенополистирол. В действительности же «Пеноплэкс» – это название компании, выпускающей данный вид утеплителя в России и других странах СНГ. Поэтому далее пойдет речь об экструдированном пенополистироле именно от этой компании.

Напомню, что экструзионный пенополистирол представляет собой полимерный утеплитель, который был придуман в середине прошлого века. По сути, это тот же пенополистирол (пенопласт), но изготавливаемый по особой технологии, в результате чего приобретает особые качества. В частности, можно выделить следующие его отличия от пенопласта:

Структура

. Если пенопласт имеет зернистую структуру, то пеноплекс – это более однородный ячеистый материал;

  • Плотность. Экструзионный пенополистирол более плотный, чем пенопласт;
  • Прочность. В результате более высокой плотности и однородной структуры данный утеплитель обладает и более высокой прочностью.
Экструдированный пенополистирол имеет однородную структуру и гладкую поверхность

Экструдированный пенополистирол имеет однородную структуру и гладкую поверхность

Внешне пеноплекс легко отличить от пенопласта. Последний имеет белый цвет, в то время как пеноплекс оранжевый. Кроме того, экструзионный пенополистирол обладает гладкой поверхностью.

Достоинства и недостатки

Домашние мастера зачастую интересуются – что лучше пеноплекс или пенополистирол? Чтобы ответить на этот вопрос, далее я приведу положительные и отрицательные качества пеноплекса, и сравню их со свойствами обычного пенополистирола.

Достоинства:

  • Эффективность. Несмотря на то, что рассматриваемый утеплитель имеет более высокую плотность, чем пенопласт, его теплопроводность ниже, т.е. он лучше держит тепло;
Благодаря высокой прочности экструзионный пенопласт можно укладывать под стяжку

Благодаря высокой прочности экструзионный пенопласт можно укладывать под стяжку

  • Прочность. Данный материал способен выдерживать большие нагрузки, что расширяет область его применения;
  • Влагоустойчивость. Утеплитель практически не впитывает влагу, в сравнении с другими материалами, например, пенополистирола;
Пеноплекс практически не впитывает влагу

Пеноплекс практически не впитывает влагу

  • Пожаробезопасность. Относится к слабогорючим материалам. Исключение составляют марки, которые предназначены для утепления фундаментов или полов под стяжку.
    Горючесть пенопласта же практически всегда очень высокая, так как производители в целях экономии не добавляют в него антипирены;
  • Долговечность. Срок службы превышает 50 лет. Как показывает практика, пенополистирол приходит в негодность раньше;
  • Экологичность. При нормальной температуре оба материала не выделяют вредных веществ;
  • Химическая устойчивость. Оба материала устойчивы к большинству химических веществ. Исключение составляют органические растворители, такие как Уайт-спирит.
Пеноплекс может прослужить более 50 лет даже в неблагоприятных условиях эксплуатации

Пеноплекс может прослужить более 50 лет даже в неблагоприятных условиях эксплуатации

Недостатки. На первый взгляд сравнение материалов говорит о том, что пеноплекс лучше пенополистирола. Однако, как и любой другой утеплитель, он имеет свои минусы:

  • Высокая стоимость. Плиты пеноплекса стоят в несколько раз дороже пенополистирола;
  • Низкая адгезия. На данном материале плохо держатся штукатурно-клеевые смеси. Правда, Пеноплэкс выпускает специальные фасадные плиты, которые имеют шероховатую поверхность, что улучшает их сцепляемость со строительными смесями;
  • Низкая паропроницаемость. Это недостаток свойственен обоим материалам.

Учитывая эти минусы – каждый сам должен решать, что лучше использовать – пенопласт или экструзионный пенополистирол. К примеру, для утепления фундамента или цоколя лучше использовать экструдированный пенопласт.

Пенопласт обладает лучшей адгезией, чем пеноплекс

Пенопласт обладает лучшей адгезией, чем пеноплекс

Если же нужно отделать стены фасада, то невозможно однозначно сказать, что лучше – пенопласт или пеноплекс. Учитывая низкую стоимость пенопласта и его хорошую адгезию, можно отдать предпочтение ему.

Виды и область применения

Итак, мы выяснили что теплее – пеноплекс или пенопласт, а также ознакомились с другими характеристиками утеплителя. Но для каких целей его применяют?

Компания Пеноплэкс выпускает несколько марок экструзионного пенополистирола, у которых разная область применения. Поэтому далее рассмотрим все серии и узнаем в чем разница между ними.

Пеноплэкс Фундамент может выдерживать большие механические нагрузки

Пеноплэкс Фундамент может выдерживать большие механические нагрузки

Итак, в настоящее время в продаже можно встретить следующие плиты Пеноплэкс:

  • Фундамент. Как не сложно догадаться из названия, эта серия предназначена для утепления фундамента, отмосток, цоколей. Также плиты можно укладывать под стяжку.
    Главная характеристика этих плит, помимо теплопроводности – это высокая прочность. Так как пожаробезопасность значения не имеет, в составе отсутствует антипирен. Поэтому не рекомендуется использовать их в конструкциях, не имеющих защитного слоя;
  • Кровля. Эта марка предназначена специально для плоских крыш. Они обладают небольшим весом и при этом высокой прочностью.
    Главная особенность данной марки заключается в том, что каждая плита имеет кромку Г-образной формы. Благодаря этому при их укладке не образуются щели;
Утеплитель серии «Комфорт» можно использовать для утепления балконов

Утеплитель серии «Комфорт» можно использовать для утепления балконов

  • Комфорт. Эта марка предназначена для утепления жилья изнутри. Также плиты подходят для утепления балконов и лоджий.
    Помимо высокой теплопроводности их особенность заключается в высокой экологичности – в составе утеплителя нет никаких вредных химических веществ;
Плиты серии «Скатная кровля» предназначены для утепления крыш

Плиты серии «Скатная кровля» предназначены для утепления крыш

  • Скатная кровля. Плиты этой серии предназначены для утепления скатных крыш. Они имеют невысокую плотность, но при этом влагоустойчивые и жесткие.
    Имеющиеся на кромках шипы и пазы исключают образование мостиков холода при состыковке плит, а также упрощают монтаж своими руками. Кроме того, они могут служить дополнительной защитой от влаги.
  • Фасад. Особенность этих плит заключается в наличии рифленой поверхности. Благодаря этому их можно использовать для утепления стен по технологии «мокрый фасад».
    Надо сказать, что утеплитель пеноплекс данной серии подходит не только для наружного, но и для внутреннего использования;

Несмотря на наличие фактуры, перед нанесением штукатурно-клеевой смеси поверхность утеплителя желательно обработать адгезионной грунтовкой.

Пеноплекс «Фасад» можно использовать для наружного утепления стен «мокрым» способом

Пеноплекс «Фасад» можно использовать для наружного утепления стен «мокрым» способом

  • Стена. Плиты этой серии обладают несколько меньшей плотностью, чем «Фасад». Производитель рекомендует использовать их в качестве наполнителя каркасных стен.
    В то же время данный утеплитель может рассматриваться как замена плитам серии «Фасад», т.е. его можно использовать для мокрых и навесных фасадов;
Пеноплекс стена можно использовать для утепления каркасных стен

Пеноплекс стена можно использовать для утепления каркасных стен

  • Основа. Данная серия наиболее универсальная, так как плиты можно использовать для утепления стен, полов, крыш и даже фундамента. Плиты сочетают в себе отличные теплоизоляционные свойства и способность выдерживать большие механические нагрузки.
Плиты серии «основа» можно укладывать под плитный фундамент

Плиты серии «основа» можно укладывать под плитный фундамент

Надо сказать, что помимо перечисленных выше серий, которые можно отнести к бытовым, существуют еще промышленные, такие как Пеноплэкс 45. Они применяются при строительстве дорог, взлетных полос аэродромов и т.д. В строительных магазинах такие марки вы не найдете.

Несмотря на влагоустойчивость пеноплекса, инструкция по его монтажу в каркасных деревянных конструкциях (стенах, кровлях и перекрытиях) требует использования пароизоляции и гидроизоляции. В противном случае влага будет скапливаться в деревянных элементах конструкции, что приведет к их гниению и другим негативным последствиям.

Стоимость

Цены в таблице актуальны весной 2017 года:

МодельЦена в рублях
Фундамент (50 мм толщина, 8 шт. в упаковке)1400
Кровля (80 мм, 5 шт.)1420
Фасад, (50 мм, 8 шт.)1350
Комфорт, (40 мм, 10 шт.)1200
Стена, (50 мм, 8 шт.)1350
Основа, (50 мм, 8 шт.)1655

Вот, собственно, и все, что я хотел рассказать вам о пеноплексе.

 

Вывод

Мы выяснили, что представляет собой пеноплекс, какими свойствами он обладает, и в каких случаях его можно использовать. Просмотрите также видео в этой статье. Со всеми вопросами относительно этого утеплителя вы можете обратиться ко мне в комментариях.

Пеноплекс: технические характеристики — коэффициент теплопроводности и другие свойства, видео и фото

Пеноплекс — что это такое, какими свойствами и характеристиками обладает, и для каких целей применяется? Я часто работаю с этим материалом, и готов ответить на поставленные вопросы. А также рассказать, где лучше всего его использовать.

Пеноплекс — экструдированный пенополистирол от отечественного производителя

Пеноплекс — экструдированный пенополистирол от отечественного производителя

Особенности Пеноплекса

Общие сведения

Этот утеплитель — экструдированный пенопласт от одноименного российского производителя. Первая производственная линия для изготовления экструдированного пенополистирола Пеноплекс появилась в далеком 1998 году.

Благодаря строгому контролю качества и применению передовых технологий, эта компания занимает на сегодняшний день лидирующие позиции по производству теплоизоляционных материалов на отечественном рынке.

Производство Пеноплекса осуществляется на современном высокотехнологичном оборудовании

Производство Пеноплекса осуществляется на современном высокотехнологичном оборудовании

Напомню, что экструзионный пенополистирол — это, можно сказать, модифицированный вариант обычного пенополистирола (пенопласта). В результате особой технологии изготовления, характеристики и эксплуатационные качества у экструдированного пенополистирола значительно выше, чем у обычного пенопласта.

Свойства

Как и любой другой утеплитель, пеноплекс имеет свои достоинства и недостатки, с которыми ознакомимся ниже.

Так выглядит структура пеноплекса в увеличенном виде

Так выглядит структура пеноплекса в увеличенном виде

Плюсы:

  • Прочность. Имеет однородную мелкоячеистую структуру. Благодаря этому он не крошится как пенопласт, а также имеет гораздо большую прочность на сжатие.
    Поэтому данный утеплитель может выдерживать большие нагрузки. К примеру, его можно укладывать под стяжку или использовать для утепления фундамента;
Благодаря высокой прочности Пеноплекс можно укладывать под стяжку

Благодаря высокой прочности Пеноплекс можно укладывать под стяжку

  • Эффективность. Теплопроводность так же выше, чем у пенопласта;
  • Долговечность. Материал даже в неблагоприятных условиях может прослужить более полувека;
  • Устойчивость к влаге. Утеплитель имеет практически нулевое влагопоглощение, поэтому не нуждается в гидроизоляции;
  • Пожаробезопасность. В составе материала имеются антипирены. Поэтому Пеноплекс — это негорючий пенополистирол.
    Надо сказать, что данное качество также выгодно отличает материал от обычного пенопласта. Дело в том, что негорючий пенопласт встречается очень редко;
Утеплитель не впитывает влагу

Утеплитель не впитывает влагу

  • Экологичность. Материал не выделяет в атмосферу вредных веществ;
  • Устойчивость к химическим веществам. Экструдированный пенополистирол не вступает в реакцию с большинством видов химических веществ. Это позволяет использовать утеплитель в грунте для утепления фундаментов и отмосток.

Органические растворители растворяют экструзионный пенополистирол. Это необходимо учитывать при выборе клеящих составов или красок для данного материала.

Минусы:

  • Низкая паропроницаемость. Утепленное экструзионным пенополистиролом жилье перестает дышать;
  • Высокая стоимость. Плиты Пеноплекса стоят значительно дороже пенопласта.
Сравнение теплопроводности пеноплекса с другими материалами

Сравнение теплопроводности пеноплекса с другими материалами

Основные параметры

Технические характеристики материала:

ПараметрыЗначения
Коэффициент теплопроводности плит, Вт/м·ºК0,03
Плотность, кг/м³25-47
Прочность на сжатие при 10% деформации, МПа0,20-0,50
Водопоглощение в течение 28 суток, % от объема0,5
Огнестойкость плитГ3-Г4
Размеры, мм600х1200
Толщина плит, мм20-100

Как вы видите, характеристики пеноплекса достаточно высокие.

Стандартные размеры листа утеплителя

Стандартные размеры листа утеплителя

Виды и предназначение

Итак, со свойствами и цифрами Пеноплекса мы разобрались. Теперь давайте рассмотрим где он используется. Область применения у этого материала очень обширна.

Утеплитель можно использовать для утепления фундамента

Утеплитель можно использовать для утепления фундамента

В настоящее время компания предлагает следующие марки Пеноплекса:

  • Фундамент. Особенность этих плит заключается в высокой прочности на сжатие, что позволяет им выдерживать большие нагрузки. В частности, они отлично подходят для утепления фундамента или для укладки под стяжку.
    Имейте в виду, что утеплитель пеноплекс этой серии не содержит в составе антипирен. Поэтому его можно использовать лишь в конструкциях с защитным слоем;
  • Кровля. Эта серия обладает низкой теплопроводностью и высокой прочностью. Кроме того, кромки плит имеют г-образную форму, что позволяет легко укладывать плиты своими руками, и при этом создавать сплошной теплоизоляционный слой без мостиков холода.
    Надо сказать, что производитель позиционирует материал, как утеплитель для плоской кровли, однако, его можно применять и для утепления других конструкций;
Серия Кровля предназначена для утепления плоских крыш

Серия Кровля предназначена для утепления плоских крыш

  • Пеноплэкс 45. Эта серия предназначена для утепления дорожного полотна, чтобы предотвратить морозное пучение.
    Кроме того, плиты используют при строительстве дорог в условиях вечной мерзлоты. Утеплитель в этом случае предотвращает подтаивание почвы и просадку дорожного полотна.
    Главная характеристика материала этой серии — это высокая прочность. Данный показатель составляет 0,50 Мпа;
  • Комфорт. Этот материал предназначен для утепления частных домов и квартир, а также балконов и лоджий. Основной упор сделан на экологичность — в составе утеплителя нет вредных химических веществ.
Пеноплекс комфорт — универсальный утеплитель для внутреннего применения

Пеноплекс комфорт — универсальный утеплитель для внутреннего применения

Кроме того, пеноплекс комфорт имеет г-образные кромки, такие же, как у серии Кровля;

  • Скатная кровля. Название этой серии говорит само за себя — она предназначена для скатных крыш. Эти плиты отличаются невысокой плотностью, но при этом они сохраняют жесткость и влагостойкость. Благодаря наличию шипов и пазов на кромках, они надежно состыковываются друг с другом и образуют сплошной слой.
    Если монтировать плиты снаружи, как показано на фото, то они также обеспечивают дополнительную защиту от влаги.
Серия Скатная кровля обеспечивает надежное и эффективное утепление скатных крыш

Серия Скатная кровля обеспечивает надежное и эффективное утепление скатных крыш

  • Основа. Этот материал позиционируется как утеплитель для гражданско-промышленного строительства. В плане применения его можно назвать универсальным — этими плитами можно выполнять утепление стен, полов, перекрытий, крыш и т.д.
    Утеплитель способен выдерживать большие нагрузки, при этом он экологичный и легкий;
  • Фасад. Данная серия предназначена для утепления наружных стен. Однако, эти плиты так же могут применяться для утепления внутренних стен и перегородок.
    Благодаря фактурной поверхности, плиты можно использовать не только для навесных, но и мокрых фасадов, т.е. их поверхность можно покрывать штукатурно-клеевыми смесями. Кроме того, в составе материала имеются антипирены;
Серия Фасад подходит для утепления наружных стен как по технологии навесной фасад, так и по технологии мокрый фасад

Серия Фасад подходит для утепления наружных стен как по технологии навесной фасад, так и по технологии мокрый фасад

  • Уклон. Эти плиты предназначены исключительно для создания уклона и контруклона на плоских крышах, так как одна их сторона толще другой;
  • Стена. Данная серия мало чем отличаются от серии Фасад, за исключением меньшей плотности. Соответственно, пеноплекс стена применяется в тех же случаях, что и фасадный материал. Кроме того, производитель рекомендует этот утеплитель для трехслойных стен из мелкоштучных материалов.
Пеноплекс Стена можно использовать для внутреннего утепления стен

Пеноплекс Стена можно использовать для внутреннего утепления стен

Несмотря на то, что серия Фасад имеет фактуру, перед оштукатуриванием крайне желательно обработать поверхность плит адгезионной грунтовкой. Причем, инструкция по применению грунтовки требует ее нанесения в 2 слоя, что позволяет добиться наибольшего эффекта, т.е. хорошей адгезии штукатурки с утеплителем.

Стоимость

Цены таблице актуальны весной 2017 г.:

МаркаЦена в рублях за упаковку
Фундамент (толщина 50 мм, 8 шт.)1400
Кровля (80 мм, 5 шт.)1420
Комфорт, (40 мм 10 шт.)1200
Основа, (50 мм, 8 шт.)1665
Фасад, (50 мм, 8 шт.)1350
Стена, (50 мм, 8 шт.)1 350

Вот и вся информация о Пеноплексе, которой я хотел с вами поделиться.

 

Вывод

Мы выяснили, что представляет собой Пеноплекс, и для каких целей его можно использовать. Дополнительно рекомендую просмотреть видео в этой статье. Если какие-то моменты вам непонятны — пишите комментарии, и я с радостью вам отвечу.

Технические характеристики пеноплекса — Комфорт, Фундамент, Кровля и Стена, толщина и цена утеплителя

Пеноплекс – это строительный теплоизолирующий материал в виде плит экструдированного вспененного полистирола, востребованного по причине легкости, прочности и долговечности. По структуре, он похож на привычный пенопласт, но отличается большей плотностью.

Пеноплекс

Едва различимые поры утеплителя размером от 0,1 до 1 мм – результат новых технологий изготовления. По внешнему виду, плиты состоят из однородного материала, который на самом деле является мелкопористым с изолированными ячейками, обеспечивающими низкую теплопроводность и водонепроницаемость.

Разнообразие марок и усиленная прочность позволяют применять его для изоляции пола, кровли, фундамента.

Виды, технические характеристики и назначение

С 2011 года введена дифференциация изделий в зависимости от назначения и области применения. Это позволяет быстро узнать нужную разновидность утеплителя с набором характеристик для определенного вида работ, способствует максимально эффективному использованию.

Выпускается несколько типов экструдированного полистирола:

СТЕНА, или пеноплекс 31 с антипиренами

Пеноплекс 31

Предназначен для утепления поверхностей без динамической или статической нагрузки. Оптимален в изоляции стен фасадов, перегородок, бассейнов, колодцев, тепловых сетей, водопровода.

Характеристики:

СвойстваЕдиница Показатель
Теплопроводность, 25°СВт/(мК)0,03
Плотностькг/м325,0–32,0
ПрочностьМПа (кгс/см2; т/м2)0,20(2,0; 20)
Водопроницаемость, 28 суток% по объему0,5
ОгнезащитагруппаГ3
Рабочая температураС°от -50 до +75

ФУНДАМЕНТ, или пеноплекс 35 без антипирена

Пеноплекс для фундамента

Плиты рассчитаны на большие нагрузки, отличаются прочностью. Прекрасно подходит к дорожным покрытиям, фундаментам, полу, оборудованию помещений подвалов. Наличие гидроизоляционного барьера позволяет отвести грунтовые воды от подземной части дома.

Характеристики:

СвойстваЕдиница Показатель
Теплопроводность, 25°СВт/(мК)0,03
Плотностькг/м329,0–33,0
ПрочностьМПа (кгс/см2; т/м2)0,27 (2,7; 27)
Водопроницаемость, 28 суток% по объему0,5
ОгнезащитагруппаГ4
Рабочая температураС°от -50 до +75

КРОВЛЯ, или пеноплекс 35

Пенолекс на крыше

Плиты рассчитаны на утепление кровель, чердачных помещений любого типа с учетом климатических осадков, температурных перепадов. В настоящее время, применяется для плоских крыш с размещением на ней зимних садов или автостоянок (инверсионная кровля).

Характеристики:

СвойстваЕдиница Показатель
Теплопроводность, 25°СВт/(мК)0,03
Плотностькг/м328,0–33,0
ПрочностьМПа (кгс/см2; т/м2)0,25 (2,5; 25)
Водопроницаемость, 28 суток% по объему0,5
ОгнезащитагруппаГ3
Рабочая температураС°от -50 до +75

КОМФОРТ, или пеноплекс 31С

Пеноплекс КОМФОРТ

Универсальные плиты подходят для изоляции лоджий, балконов, стен и пола саун, особняков. Отличается повышенной влагостойкостью, обеспечивает оптимальный микроклимат. Благодаря техническим особенностям, плиты данного типа особенно плотно примыкают друг к другу.

Характеристики:

СвойстваЕдиница Показатель
Теплопроводность, 25°СВт/(мК)0,03
Плотностькг/м325,0–35,0
ПрочностьМПа (кгс/см2; т/м2)0,20 (2,0; 20)
Водопроницаемость, 28 суток% по объему0,5
ОгнезащитагруппаГ4
Рабочая температураС°от -50 до +75

Пеноплекс 45

Пеноплекс для автодорог

Применяется для теплозащиты взлетных покрытий и автодорог, оберегает от просадки, деформаций, вспучивания полотна. Предназначен для больших нагрузок: может выдержать вес самолета в условиях регионов с низкими температурами. Прочнейший материал сохраняет свойства долгое время.

Характеристики:

СвойстваЕдиница Показатель
Теплопроводность, 25°СВт/(мК)0,03
Плотностькг/м335,0–47,0
ПрочностьМПа (кгс/см2; т/м2)0,50 (5,0; 50)
Водопроницаемость, 28 суток% по объему0,4
ОгнезащитагруппаГ4
Рабочая температураС°от -50 до +75

Размеры, толщина и стоимость

Устойчивость теплоизоляционных свойств позволяет применять плиты средней толщины от 35 до 50 мм. Это средний показатель для стандартного решения в умеренном климате.

Увеличенная толщина пеноплекса до 70 мм и более используется в северных районах, где температура часто опускается до -300 С. Такой подход оправдан, тем более что обычная толщина других утеплителей достигает 150 мм.

Размеры плит унифицированы производителем до стандартных 1200 мм в длину и 600 мм в ширину.

В сравнении с другими видами утеплителей, стоимость пеноплекса достаточна высокая: цена 1 кв.м листа в среднем составляет 5 $. Если материал модифицирован с улучшенными качествами, включая добавки антипирена, то цена составит 7-8 $ за 1 кв.м.

Технология производства и область применения

Производство пеноплексаСпецифика изготовления пеноплекса направлена на улучшение прочностных технических характеристик материала. Особые свойства ему придает процесс экструзии из сырьевой массы в специальных печах.

Сначала, гранулы полистирола в условиях высокой влажности и температуры смешивают с реагентом для вспенивания. Катализатором выступает состав из двуокиси углерода (СО2) и фреона. Состав из пенополистирола переплавляется в печах и напоминает пышные сливки.

Затем, через экструзионную установку начинается выдавливание вещества, фреон постепенно улетучивается, а ячейки заполняет простой воздух.

Применение пеноплекса в сфере строительства, практически не имеет ограничений и благодаря техническим характеристикам позволяет существенно снизить затраты на другие расходные материалы и энергоресурсы.

В настоящее время, теплоизолятор востребован в разных климатических условиях для утепления и защиты:

  • фундаментов и стен малоэтажных зданий;
  • балконов и лоджий;
  • бассейнов и колодцев;
  • перекрытий и подвальных помещений;
  • полов и потолков;
  • систем водоснабжения;
  • взлетных полос аэродромов;
  • железных и автомобильных дорог;

Пеноплекс разных категорий широко применяется в процессе реконструкции зданий по причине высокой устойчивости к изменениям внешней среды и химическим воздействиям. Используют материал для изготовления сэндвич-панелей.

Свойства материала

Пеноплекс

Основные характеристики утеплителя соответствуют требованиям строительных нормативов:

  1. Низкий коэффициент теплопроводности. Средний уровень соответствует 0,027–0,031 Вт/м. Показатель является лучшим в классе утеплителей. В то же время, его отличие от родственных материалов, например, минваты, не столь значительно. Но сочетание низкой теплопроводности с усиленной плотностью структуры дает заметные преимущества. Важным фактором является неизменность показателя, существенные колебания в различных условиях не фиксируются, поэтому применение пеноплекса допускается без дополнительного влагозащитного слоя как на крышах и чердаках, так и на фундаментах, полах, в подвалах.
  2. Огнестойкость. Пожаростойкость характеризуется категориями Г3 или Г4, что означает умеренный уровень, превосходящий свойства пенопласта, поддерживающего горение. Для пенопласта приемлемы рабочие температуры от -50° до +70°С. В условиях открытого огня, происходит разрушение материала. Начинается процесс плавления, но не горения. Некоторые виды пеноплекса отличаются усиленной обработкой химическими реагентами для проявления самозатухания. Это улучшенное качество соответствует полной пожаробезопасности при расширенном температурном режиме эксплуатации.
  3. Влагостойкость. Водопоглощение экструдированного пенополистирола составляет за период в 28 суток 0,4% от объема. Влага попадает только во внешние поры утеплителя, открытые при разрезке и монтаже плит. Закрытые ячейки сохраняются неизменными. Фактически, можно утверждать, что материал не пропускает влагу. Для утепления фасадов и кровель зданий, такие показатели влагостойкости являются очень существенными.
  4. Высокая упругость на сжатие. Этот показатель равняется 25-35 кг/м3 и является непревзойденным среди пенополистирольных утеплителей. Сопротивление при сжатии достигается за счет равномерного распределения крохотных ячеек с хорошим сцеплением, улучшающих прочностные характеристики материала. Пеноплекс не меняет размеры даже в условиях больших нагрузок. Плиты очень сложно разломать. Повреждениям подвержен только материал небольшой толщины в 20 мм, но по линии разлома нет крошения или дробления в отличие от иных родственных утеплителей.
  5. Слабая паропроницаемость. Повышенная сопротивляемость отражается в равных показателях пеноплекса высотой 2 см и слоя рубероида.
  6. Длительный срок эксплуатации. Гарантийный период применения составляет 50 лет с учетом атмосферного воздействия. При благоприятных климатических условиях, плиты прослужат значительно больше с сохранением всех своих характеристик.
  7. Экологичность. Применение фреона в изготовлении утеплителя абсолютно безвредно: данный тип не горюч, не токсичен, не причиняет разрушения озоновому слою. Экологические свойства взаимосвязаны с биостойкостью утеплителя, отсутствием ядовитых веществ. Материал не подвержен биологическому распаду, поэтому не нуждается в создании особенных условий хранения, плиты могут размещаться на площадках без укрытий от осадков или перепадов температур.
  8. Доступность в монтаже и обработке. Разрезать плиту можно обычным канцелярским ножом. Небольшой вес позволяет самостоятельно обшивать стены без дополнительных усилий в сооружении специальных каркасов. Материал хорошо держится на клею. Погодные условия не препятствуют монтажу.
  9. Устойчивость к агрессивным веществам. Большая часть строительных смесей и препаратов не способны повредить пеноплекс, не вступающий с ними в реакцию. К ним относятся органические и неорганические кислоты, щелочи, водные краски, растворы солей, аммиак, цементные или бетонные смеси, спирты и масла, хлорная известь. Экструдированному пенополистиролу практически не свойственна химическая активность. Внимание! Исключением являются эфиры, бензины, формальдегиды, краски на масляной основе.
  10. Высокая звукоизоляция. В частном домостроении, фактор шумоизоляции очень важен. Пеноплекс решает эту проблему.

Плюсы и минусы

ПеноплексПоложительные особенности утеплителя проявляются на всех этапах применения этого материала:

  1. Легкие плиты просты в подготовке и обработке, не требуют особых знаний и навыков в работе.
  2. Крепятся разными способами и не требуют дополнительных слоев паро- и гидроизоляции.
  3. Прекрасные теплоизоляционные качества позволяют экономить на других строительных материалах.
  4. Долговечность и прочность в любых климатических испытаниях.
  5. Безопасность и экологичность.

К недостаткам материала нового поколения относят:

  1. Подверженность атакам грызунов, что свойственно всем видам утеплителей.
  2. Выделение едкого дыма при разложении под воздействием открытого огня.
  3. Не выдерживает соединения с керосином, бензином или дизельным топливом.
  4. Недостаточную звукоизоляцию, по сравнению с предназначенными для этого материалами.
  5. Высокие цены на различные виды пеноплекса, сравнимые с дорогой минеральной ватой.

Статья была полезна?

0,00 (оценок: 0)

Утеплитель пеноплекс технические характеристики — для любых элементов здания, коэффициент теплопроводности пеноплекса, температура плавления,теплопроводность, паропроницаемость, свойства,

Размеры и вес, расчет количества

Теплоизоляционные плиты Пенофлэкс могут быть разной толщины, поэтому упаковка может иметь разные размеры, в ней может быть разное количество листов. Еще надо учесть, что размеры плит указываются без учета шипов/замков.

Для расчета количества упаковок есть два метода: с использованием объема или площади упаковки:

  • Вы знаете утепляемую площадь, находите площадь утеплителя нужной толщины в упаковке и делите утепляемую площадь на это значение. Например, надо утеплить 15 квадратов, использовать будет плиты толщиной 40 мм. Площадь утеплителя в упаковке — 6,24 м². Считаем: 15/6,24 = 2,4 упаковки.
  • Чтобы рассчитать по объему, утепляемую площадь умножаем на толщину, получаем требуемый объем. Далее, по аналогии с примером выше, делим найденную цифру на объем одной упаковки. Получаем количество упаковок утеплителя. Посчитаем для того же случая: 15 м² * 0,04 м = 0,6 м³. По таблице одна упаковка этого материала имеет объем 0,2493 м³. находим количество упаковок: 0,6/0,2493 = 2,4 упаковки.

Если количество упаковок не целое (скорее всего так и будет), образуется некоторый излишек. Если излишек получается большой (как в примере — больше половины плит оказывается ненужной) и использовать вам его будет некуда, уточните, может продавец торгует неполными упаковками. В этом случае расчет будет чуть сложнее. Следует прикинуть, сколько плит вам надо в дополнении к целым упаковкам.

Для этого:

  • Находим площадь, которую покрывают целые упаковки. Для примера это: 2 уп * 6,24 м² = 12,48 м².
  • Так как нам надо утеплить 15 квадратов, от этой цифры вычитаем найденную: 15 м² — 12,48 м² = 2,52 м². Это та площадь, на которую следует докупить плит.
  • Площадь одной теплоизоляционной плиты Пенофлэкс равна 0,6932 м². Если остаток разделить на эту цифру, получим требуемое количество дополнительных листов утеплителя: 2,52 м² / 0,6932 м² = 3,63 шт. Получается, что нам нужны будут дополнительно к двум упаковкам 4 плиты.
  • При таком точном расчете, лучше брать небольшой запас — одну-две плиты. На случай если где-то ошиблись в измерениях или расчетах, где-то края замялись и другие непредвиденные случаи.

Чем особенным отличается экструдированный пенополистирол

Производство Пеноплекса выполнено методом экструзии, который впервые был применен в США полвека назад. Полистирол вспенивается химической реакцией при большом давлении и при высокой температуре. В результате, в материале образуются совсем маленькие ячейки — до 0,2 миллиметров, с почти одинаковыми размерами. А также полностью замкнутые, в отличие от пенопласта.

Экструдированный полистирол приобретает следующие отличительные свойства:

  • Повышенную прочность на сжатие — от 0,2МПа до 0,6Мпа в зависимости от плотности, которая может находиться в пределах от 25 кг/м куб. до 50 кг/м куб., наиболее плотные можно укладывать под покрытием автомобильной дорожки.
  • Практически нулевое водопоглощение, — можно применять в грунте без защиты.
  • Почти полное отсутствие проницаемости для водяного пара — на стене из любого обычного строительного материала, слой экструдированного пенополистирола толщиной от 2 см, окажется пароизолятором.

Особенности теплоизолятора

Данный утеплитель являет

Пеноплекс «Основа» характеристики и сравнение утеплителя

Пеноплекс Основа — это плиты пенополистирола, полученные с применением технологии экструзии. Она заключается в продавливании вспененной расплавленной массы через формовочные сопла. В результате под воздействием температуры и высокого давления материал обретает мелкопористую структуру с небольшими изолированными друг от друга воздушными ячейками.

Стандартная ширина листа пеноплекса Основа составляет 600 мм, а длина — 1200 мм. Толщина листа может быть 20, 30, 40, 50, 60, 80, 100, 120 или 150 мм.

Пеноплекс Основа - эффективный утеплитель

Технические характеристики пеноплекса Основа

Основные технические характеристики пеноплекса Основа:

  • Коэффициент теплопроводности составляет 0,030 Вт/(м*С), согласно Госту 7076−99.
  • Коэффициент паропроницаемости варьируется от 0,007 до 0,008 мг/(м*час*Па).
  • Звукопоглощение Пеноплекса Основа составляет 41 дБ.
  • Коэффициент влагопоглощения — 0,5−0,6%.
  • Плотность пеноплекса составляет от 28 до 35 кг/ м³.
  • Предел прочности на сжатие — 0,20 Мпа.
  • Температурный диапазон эксплуатации от — 100 до +75 °С.
  • Категория огнестойкости — группа Г4.
Таблица 1. Сравнение характеристик различных материалов, используемых для утепления
ПараметрыПеноплекс ОсноваЭППСПенопластППС
Коэффициент теплопроводности, Вт/(м*С)0,0300,039−0,0340,033−0,0500,032−0,044
Коэффициент паропроницаемости, мг/(м*час*Па)0,007−0,0080,010,05−0,230
Плотность, кг/ м³28−3525−3815−3511−35
Влагопоглощение, %0,5−0,60,042−44
Звукопоглощениехорошеехорошеехорошеехорошее

Из таблицы видно, что пеноплекс Основа не только не уступает другим утеплителям пенополистирольной группы, но и по некоторым показателям даже превосходит их. Материал обладает одним из самых низких коэффициентов влагопоглощения и хорошо удерживает тепло.

Достоинства и недостатки

Преимущества утеплителя:

  • Хорошие теплоизоляционные свойства.
  • Низкая паропроницаемость.
  • Практически нулевое водопоглощение согласно Госту 15 588−86. Материал не впитывает влагу и испарения, поэтому может применяться для утепления бань и саун.
  • Высокая прочность. Пеноплекс выдерживает значительные нагрузки на разрыв и сжатие.
  • Хорошая звукоизоляция.
  • Срок службы материала — до 50 лет, в течение которых утеплитель сохраняет все свои свойства и начальную форму.
  • Даже при длительном сроке эксплуатации материал сохраняет свою химическую структуру и не разлагается на ядовитые компоненты, тем самым не нанося вреда человеку и окружающей среде.
  • Биологическая стойкость. Пеноплекс Основа не подвержен гниению и плесени.
  • Простота резки и монтажа. Материал неплохо режется малярным ножом и не потребует применения специальных инструментов для работы с листами.
  • Утеплять жилище пеноплексом Основа можно при любой температуре дома или на улице.
  • Небольшой вес материала.

Недостатки пеноплекса Основа:

  • Ненатуральное происхождение.
  • Высокая стоимость.
  • Сильная дымность.

Технология утепления

Пеноплекс Основа отлично подходит для утепления как полов так и стен.

Утепление деревянного пола с лагами

Пеновплекс основа в деревянном домеВо-первых, заменяются все поврежденные участки на досках и лагах. Далее все деревянные поверхности пропитываются антисептическими средствами для предотвращения гниения. Выемки и щели, обнаруженные на досках, нужно заполнить специальной шпаклевкой по дереву.

Далее все поверхности из дерева проходят грунтовкой. После просыхания грунтовки начинается укладка листов утеплителя. Их режут в соответствии с расстоянием между лагами и длиной помещения и кладут на доски.

Стыки между плитами пеноплекса должны оставаться максимально плотными, дополнительно их фиксируют строительным скотчем. Далее на плиты пеноплекса внахлест укладывают листы пароизоляционного материала. На слой пароизоляции крепятся доски, фанера или ДСП. Заключительным этапом является монтаж напольного покрытия (линолеум, ламинат, паркет).

Утепление пола при укладке на грунт

Утепление пеноплексом грунтового основанияПри утеплении полов в доме со свайным или ленточным фундаментом применяется метод укладки утеплительного материала на грунт. Во-первых, нужно выровнять слой земли, а затем утрамбовать его.

Далее на землю высыпают щебень и гравий. Следом насыпают песок и утрамбовывают его. На песчаную «подушку», начиная от угла, плотно прижимая, укладывают листы пеноплекса.

Для защиты от проникновения влаги на листы пеноплекса укладывают гидроизоляционную мембрану так, чтобы ее края выходили на 10−15 см вверх по стене.

Для усиления конструкции стяжку армируют металлической сеткой. Далее для стяжки применяется цементно-песочная смесь, которая заливается поверх сетки. В заключение после полного просыхания цементного слоя на него стелется линолеум или укладывается ламинат или паркет.

Утепление пола под стяжку

При применении этого способа утепления рекомендуется выбирать модификацию пеноплекса Фундамент.

Утепление стен изнутри

Пеноплекс "Основа" - обзор утеплителя и сравнение с маркой "Комфорт"

Пеноплекс Основа часто применяется и при утеплении внутренних стен дома. Во-первых, стены очищают от старого покрытия и наносят слой грунтовки. Далее начинают крепить листы пеноплекса к стенам.

Сначала изнаночную сторону листа пеноплекса Основа проходят игольчатым валиком, для обеспечения лучшего сцепления. Далее на лист наносят клеевой слой, лист прикладывают к поверхности стены и удерживают полминуты.

Клеить начинают с нижнего угла, затем продвигаясь вверх и в сторону. Приклеенные листы пеноплекса дополнительно фиксируются пластмассовыми дюбелями со шляпкой-зонтиком. После просыхания клея с помощью монтажной пены необходимо заполнить щели между листами.

Важно: выемки шириной более сантиметра необходимо заполнить обрезками листов пеноплекса.

На следующем этапе крепится штукатурная сетка из стеклоткани на клей или с помощью дюбелей. Далее наносится выравнивающий слой штукатурки, и далее финишный слой шпатлевки. В заключении поверхность окрашивается или на нее приклеивают обои.

Утепление наружных стен

При утеплении стен зданий и сооружений снаружи рекомендуется применять пеноплекс Фасад, в состав которого входят специальные вещества-антипирены для снижения риска возгораемости.

Разница между пеноплексом «Основа» и пеноплексом «Комфорт»?

Пеноплекс "Основа" - обзор утеплителя и сравнение с маркой "Комфорт"В 2015 году завод «Пеноплэкс», более 18 лет выпускающий теплоизоляционные плиты ПЕНОПЛЭКС из экструзионного пенополистирола, начал производство новых марок Пеноплекса таких как Основа, Фасад и прочие.

Чем же отличаются модификации Основа и Комфорт?

Основные технические характеристики, такие как теплопроводность, паропроницаемость и водопоглощение у Пеноплекс Комфорт и Основы одинаковые.

Различные значения имеет только показатель прочность на сжатие. У пеноплекс Комфорт этот показатель составляет 0,18 МПа, а у Основы — 0,20 Мпа. Это означает, что пеноплекс Основа способен выдержать больше нагрузки, и соответственно является более жёстким.

Обусловлено это тем, что пеноплекс Комфорт изначально предполагался только для продаж в розницу, а модификация Основа предназначена для профессионального строительства.

В заключение можно сказать, что пеноплекс Основа — это уникальный и эффективный материал для утепления, подходящий для большинства поверхностей. Свою популярность он приобрел за счет высокого качества и отличных теплоизоляционных свойств.

Видео: просто рекламный ролик торговой марки Пеноплекс 🙂

Теплопроводность — Простая английская Википедия, бесплатная энциклопедия

Теплопроводность — это способность материала проводить тепло. Металлы хороши в теплопроводности, как и газы. Теплопроводность материала является определяющим свойством, которое помогает в разработке эффективных технологий нагрева / охлаждения. Значение теплопроводности может быть определено путем измерения скорости, с которой тепло может проходить через материал.

Тепловое сопротивление является противоположностью теплопроводности.Это значит не проводить много тепла. Материалы с высоким удельным сопротивлением называются «теплоизоляторами» и используются в одежде, термосах, домашней изоляции и автомобилях, чтобы согреть людей, или в холодильниках, морозильных камерах и термосах, чтобы держать вещи в холоде.

Теплопроводность часто обозначается греческой буквой «каппа», κ {\ displaystyle \ kappa} , Единицами теплопроводности являются ватты на метр-кельвин. Ватты — это мера мощности, метры — это мера длины, а Кельвины — это мера температуры.Из единиц мы можем видеть, что теплопроводность является мерой того, сколько энергии перемещается на расстояние из-за разницы температур.

Вот некоторые замечательные теплоизоляторы: Вакуум, Аэрогель, Полиуретан

Некоторые великие теплопроводники: Серебро, Медь, Бриллиант

Серебро является одним из наиболее теплопроводящих материалов (и является относительно распространенным), и из-за этого есть несколько интересных экспериментов с серебром, которые очень хорошо показывают, как работает теплопроводность.

Один из примеров — когда вы кладете 2 ложки в кипящую воду, одна ложка — сталь, а другая — серебро. Когда вы вынимаете ложки из кипящей воды, серебряная ложка горячее стальной ложки. Причина в том, что серебро проводит тепло лучше, чем сталь. Из-за этого серебряная ложка также остынет быстрее, так как она лучше выделяет тепло.

Другим примером теплопроводности серебра является нанесение различных материалов на кубики льда. Железная шайба будет просто сидеть на льду и постепенно станет холоднее.Медная копейка растает через кубик льда и станет холоднее быстрее. Серебряная монета, ложка или кольцо на кубике льда утонет в нем почти так же, как если бы кубик льда был сделан из густого сиропа, а серебро почти мгновенно станет ледяным. Опять же, это потому, что серебро действительно хорошо отбирает тепло из воздуха и передает его кубику льда. Медь тоже хороша в этом, но не так сильно, как серебро.

,
Теплопроводность — определение и подробное объяснение
    • Классы
      • Класс 1 — 3
      • Класс 4 — 5
      • Класс 6 — 10
      • Класс 11 — 12
    • КОНКУРСНЫЕ СУЩНОСТИ
      • BBS
      • 000000000000 Книги
        • NCERT Книги для 5 класса
        • NCERT Книги Класс 6
        • NCERT Книги для 7 класса
        • NCERT Книги для 8 класса
        • NCERT Книги для 9 класса 9
        • NCERT Книги для 10 класса
        • NCERT Книги для 11 класса
        • NCERT Книги для 12-го класса
      • NCERT Exemplar
        • NCERT Exemplar Class 8
        • NCERT Exemplar Class 9
        • NCERT Exemplar Class 10
        • NCERT Exemplar Class 11
        • NCERT Exemplar Class 12
        • 9000al Aggar Agaris Agard Agard Agard Agard Agard 2000 12000000
          • RS Решения Aggarwal класса 10
          • RS Решения Aggarwal класса 11
          • RS Решения Aggarwal класса 10
          • 90 003 Решения RS Aggarwal класса 9
          • Решения RS Aggarwal класса 8
          • Решения RS Aggarwal класса 7
          • Решения RS Aggarwal класса 6
        • Решения RD Sharma
          • Решения класса RD Sharma
          • Решения класса 9 Шарма 7 Решения RD Sharma Class 8
          • Решения RD Sharma Class 9
          • Решения RD Sharma Class 10
          • Решения RD Sharma Class 11
          • Решения RD Sharma Class 12
        • ФИЗИКА
          • Механика
          • 000000 Электромагнетизм
        • ХИМИЯ
          • Органическая химия
          • Неорганическая химия
          • Периодическая таблица
        • МАТС
          • Теорема Пифагора
          • Отношения и функции
          • Последовательности и серии
          • Таблицы умножения
          • Детерминанты и матрицы
          • Прибыль и убыток
          • Полиномиальные уравнения
          • Делительные дроби
        • 000 ФОРМУЛЫ
          • Математические формулы
          • Алгебровые формулы
          • Тригонометрические формулы
          • Геометрические формулы
        • КАЛЬКУЛЯТОРЫ
          • Математические калькуляторы
          • S000
          • 80003 Pегипс Класс 6
          • Образцы документов CBSE для класса 7
          • Образцы документов CBSE для класса 8
          • Образцы документов CBSE для класса 9
          • Образцы документов CBSE для класса 10
          • Образцы документов CBSE для класса 11
          • Образец образца CBSE pers for Class 12
        • CBSE Предыдущий год Вопросник
          • CBSE Предыдущий год Вопросники Класс 10
          • CBSE Предыдущий год Вопросник класс 12
        • HC Verma Solutions
          • HC Verma Solutions Класс 11 Физика
          • Решения HC Verma Class 12 Physics
        • Решения Lakhmir Singh
          • Решения Lakhmir Singh Class 9
          • Решения Lakhmir Singh Class 10
          • Решения Lakhmir Singh Class 8
        • Примечания
        • CBSE
        • Notes
            CBSE Класс 7 Примечания CBSE
          • Класс 8 Примечания CBSE
          • Класс 9 Примечания CBSE
          • Класс 10 Примечания CBSE
          • Класс 11 Примечания CBSE
          • Класс 12 Примечания CBSE
        • Примечания пересмотра
        • CBSE Редакция
        • CBSE
        • CBSE Class 10 Примечания к пересмотру
        • CBSE Class 11 Примечания к пересмотру 9000 4
        • Замечания по пересмотру CBSE класса 12
      • Дополнительные вопросы CBSE
        • Дополнительные вопросы CBSE 8 класса
        • Дополнительные вопросы CBSE 8 по естественным наукам
        • CBSE 9 класса Дополнительные вопросы
        • CBSE 9 дополнительных вопросов по науке CBSE
        • 9000 Класс 10 Дополнительные вопросы по математике
        • CBSE Класс 10 Дополнительные вопросы по науке
      • Класс CBSE
        • Класс 3
        • Класс 4
        • Класс 5
        • Класс 6
        • Класс 7
        • Класс 8
        • Класс 9
        • Класс 10
        • Класс 11
        • Класс 12
      • Решения для учебников
    • Решения NCERT
      • Решения NCERT для класса 11
          Решения NCERT для физики класса 11
        • Решения NCERT для класса 11 Химия
        • Решения для класса 11 Биология
        • NCERT Решения для класса 11 Математика
        • 9 0003 NCERT Solutions Class 11 Бухгалтерия
        • NCERT Solutions Class 11 Бизнес исследования
        • NCERT Solutions Class 11 Экономика
        • NCERT Solutions Class 11 Статистика
        • NCERT Solutions Class 11 Коммерция
      • NCERT Solutions для класса 12
        • NCERT Solutions для Класс 12 Физика
        • Решения NCERT для 12 класса Химия
        • Решения NCERT для 12 класса Биология
        • Решения NCERT для 12 класса Математика
        • Решения NCERT Класс 12 Бухгалтерский учет
        • Решения NCERT Класс 12 Бизнес исследования
        • Решения NCERT Класс 12 Экономика
        • NCERT Solutions Class 12 Бухгалтерский учет Часть 1
        • NCERT Solutions Class 12 Бухгалтерский учет Часть 2
        • NCERT Solutions Class 12 Микроэкономика
        • NCERT Solutions Class 12 Коммерция
        • NCERT Solutions Class 12 Макроэкономика
      • NCERT Solutions Для Класс 4
        • Решения NCERT для математики класса 4
        • Решения NCERT для класса 4 EVS
      • Решения NCERT для класса 5
        • Решения NCERT для математики класса 5
        • Решения NCERT для класса 5 EVS
      • Решения NCERT для класса 6
        • Решения NCERT для класса 6 Maths
        • Решения NCERT для класса 6 Science
        • Решения NCERT для класса 6 Общественные науки
        • Решения NCERT для класса 6 Английский
      • Решения NCERT для класса 7
        • Решения NCERT для класса 7 Математика
        • Решения NCERT для 7 класса Science
        • Решения NCERT для 7 класса Общественные науки
        • Решения NCERT для 7 класса Английский
      • Решения NCERT для 8 класса Математические решения
        • для 8 класса Математика
        • Решения NCERT для класса 8 Science
        • Решения NCERT для класса 8 Общественные науки
        • NCERT Solutio ns для класса 8 Английский
      • Решения NCERT для класса 9
        • Решения NCERT для класса 9 Общественные науки
      • Решения NCERT для класса 9 Математика
        • Решения NCERT для класса 9 Математика Глава 1
        • Решения NCERT Для класса 9 Математика 9 класса Глава 2
        • Решения NCERT для математики 9 класса Глава 3
        • Решения NCERT для математики 9 класса Глава 4
        • Решения NCERT для математики 9 класса Глава 5
        • Решения NCERT для математики 9 класса Глава 6
        • Решения NCERT для Математика 9 класса Глава 7
        • Решения NCERT для математики 9 класса Глава 8
        • Решения NCERT для математики 9 класса Глава 9
        • Решения NCERT для математики 9 класса Глава 10
        • Решения NCERT для математики 9 класса Глава 11
        • Решения NCERT для Математика 9 класса Глава 12
        • Решения NCERT для математики 9 класса Глава 13
        • Решения NCERT для математики 9 класса Глава 14
        • Решения NCERT для математики класса 9 Глава 15
      • Решения NCERT для науки 9 класса
        • Решения NCERT для науки 9 класса Глава 1
        • Решения NCERT для науки 9 класса Глава 2
        • Решения NCERT для класса 9 Наука Глава 3
        • Решения NCERT для 9 класса Наука Глава 4
        • Решения NCERT для 9 класса Наука Глава 5
        • Решения NCERT для 9 класса Наука Глава 6
        • Решения NCERT для 9 класса Наука Глава 7
        • Решения NCERT для 9 класса Научная глава 8
        • Решения NCERT для 9 класса Научная глава
        • Научные решения NCERT для 9 класса Научная глава 10
        • Научные решения NCERT для 9 класса Научная глава 12
        • Научные решения NCERT для 9 класса Научная глава 11
        • Решения NCERT для 9 класса Научная глава 13
        • Решения NCERT для 9 класса Научная глава 14
        • Решения NCERT для класса 9 Science Глава 15
      • Решения NCERT для класса 10
        • Решения NCERT для класса 10 Общественные науки
      • Решения NCERT для математики класса 10
        • Решения NCERT для математики класса 10 Глава 1
        • Решения NCERT для математики класса 10 Глава 2
        • решения NCERT для математики класса 10 глава 3
        • решения NCERT для математики класса 10 глава 4
        • решения NCERT для математики класса 10 глава 5
        • решения NCERT для математики класса 10 глава 6
        • решения NCERT для математики класса 10 Глава 7
        • решения NCERT для математики класса 10 глава 8
        • решения NCERT для математики класса 10 глава 9
        • решения NCERT для математики класса 10 глава 10
        • решения NCERT для математики класса 10 глава 11
        • решения NCERT для математики класса 10, глава 12
        • Решения NCERT для математики класса 10, глава 13
        • соль NCERT Решения для математики класса 10 Глава 14
        • Решения NCERT для математики класса 10 Глава 15
      • Решения NCERT для науки 10 класса
        • Решения NCERT для науки 10 класса Глава 1
        • Решения NCERT для науки 10 класса Глава 2
        • Решения NCERT для класса
.
Понимание теплопроводности | Передовые тепловые решения

Теплопроводность: Мера способности материала передавать тепло. Учитывая две поверхности с каждой стороны материала с разностью температур между ними, теплопроводность представляет собой тепловую энергию, передаваемую за единицу времени и за единицу площади поверхности, деленную на разность температур c e [1].

Теплопроводность — это объемное свойство, которое описывает способность материала передавать тепло.В следующем уравнении теплопроводность является коэффициентом пропорциональности к . Расстояние теплопередачи определяется как † x , перпендикулярно области A . Скорость тепла, передаваемого через материал, составляет Q , от температуры T 1 до температуры T 2 , когда T 1 > T 2 [2].


Рис. 1. Процесс теплопередачи с горячей (T1) поверхности на холодную (T2)
Теплопроводность материалов играет важную роль в охлаждении электронного оборудования.От кристалла, где вырабатывается тепло, до шкафа, в котором размещается электроника, теплопроводность проводимости и, следовательно, теплопроводность являются неотъемлемыми компонентами всего процесса управления температурой.

Путь тепла от матрицы к внешней среде является сложным процессом, который необходимо понимать при проектировании теплового решения. В прошлом многие устройства могли работать без внешнего охлаждающего устройства, такого как радиатор. В этих устройствах необходимо было оптимизировать сопротивление проводимости от матрицы к плате, так как основной путь теплопередачи проходил в печатную плату.Когда уровни мощности увеличились, передача тепла исключительно на плату стала неадекватной (кредит шакита). Большая часть тепла теперь рассеивается непосредственно в окружающую среду через верхнюю поверхность компонента. В этих новых более мощных устройствах важно низкое сопротивление соединения между корпусом, а также конструкция присоединенного радиатора.

Чтобы определить важность теплопроводности материала в конкретном приложении для управления температурным режимом (например, радиатором), важно разделить общее тепловое сопротивление, связанное с теплопроводностью проводимости, на три части: межфазное сопротивление, сопротивление растеканию и сопротивление проводимости.

  • Материал интерфейса усиливает тепловой контакт между несовершенными сопрягаемыми поверхностями. Материал с высокой теплопроводностью и хорошей способностью к смачиванию поверхности снижает сопротивление поверхности раздела .
  • Сопротивление растяжению используется для описания теплового сопротивления, связанного с небольшим источником тепла, соединенным с большим теплоотводом. Среди прочих факторов теплопроводность основания радиатора напрямую влияет на сопротивление растеканию.
  • Сопротивление проводимости является мерой внутреннего теплового сопротивления в радиаторе, когда тепло распространяется от основания к ребрам, где оно рассеивается в окружающую среду. Что касается конструкции радиатора, сопротивление проводимости менее важно в условиях естественной конвекции и в условиях низкого воздушного потока, и становится более важным по мере увеличения скорости потока.

Общими единицами теплопроводности являются Вт / мК и БТЕ / ч-фут- o F.

Рис. 2. Теплопроводность тонкой пленки кремния [3].

В электронной промышленности постоянное стремление к уменьшению размеров и увеличению скорости значительно сократило масштаб многих компонентов. Поскольку этот переход теперь продолжается от макроуровня к микроуровню, важно учитывать влияние на теплопроводность и не предполагать, что объемное свойство все еще является точным. Уравнения Фурье на основе континуума не могут предсказать тепловые характеристики в этих меньших масштабах. Необходимы более полные методы, такие как уравнение переноса Больцмана и решеточный метод Больцмана [3].

Влияние толщины на проводимость можно увидеть на рисунке 2. Характеризуемым материалом является кремний, который широко используется в электронике.

Рисунок 2. Теплопроводность тонкой пленки кремния [3]

Как и многие физические свойства, теплопроводность может быть анизотропной в зависимости от материала (зависит от направления). Кристаллический и Графит являются двумя примерами таких материалов. Графит был использован в электронной промышленности, где его высокая проводимость в плоскости является ценным.Кристаллы графита имеют очень высокую проводимость в плоскости (~ 2000 Вт / мК), благодаря сильной углерод-углеродной связи в их основной плоскости. Однако параллельные базальные плоскости слабо связаны друг с другом, и теплопроводность, перпендикулярная этим плоскостям, довольно низкая (~ 10 Вт / мК) [4].

На теплопроводность влияют не только изменения толщины и ориентации, температура также влияет на общую величину. Из-за повышения температуры материала увеличивается внутренняя скорость частиц и теплопроводность.Эта увеличенная скорость передает тепло с меньшим сопротивлением. Закон Видемана-Франца описывает это поведение, соотнося тепловую и электрическую проводимость с температурой. Важно отметить, что влияние температуры на теплопроводность является нелинейным и трудно предсказать без предварительного исследования. Графики ниже показывают поведение теплопроводности в широких диапазонах температур. Оба эти материала, нитрид алюминия и кремний, широко используются в электронике (рисунки 3 и 4 соответственно).

В будущем более мощные процессоры с несколькими ядрами еще больше увеличат потребность в теплопроводности. Поэтому, стоит также исследовать другие области исследований и разработок в области улучшения теплопроводности существующих материалов, используемых в электронных упаковках. Одной из таких областей является влияние нанотехнологий на теплопроводность, где углеродные нанотрубки показали значения проводимости, близкие к алмазным, из-за больших свободных от фононов путей [7].Разработка новых материалов и усовершенствование существующих материалов приведет к более эффективному управлению температурой, так как рассеиваемая мощность устройства постоянно растет.

Справочные материалы:

1. Теплопроводность, Американский словарь по научному наследию, компания Houghton Mifflin

2. Моран, М. и Шапиро, Х. Основы инженерной термодинамики, с 47, 1988

3. Гай, С., Ким, В., Чунг, П., Амон, С., Джон, М., Анизотропная теплопроводность наноразмерных ограниченных тонких пленок через решетку Больцмана, Химическая инженерия, Университет Карнеги-Меллона, ноябрь.2006

4. Норли Дж. Роль природного графита в охлаждении электроники, охлаждении электроники, август 2001 г.

5. Slack, G.A., Tanzilli R.A., Pohl R.O., Vandersande J.W., J. Phys. Химреагент Твердые вещества 48, 7 (1987), 641-647,

.

6. Глассбреннер С. и Слэк Г. Теплопроводность кремния и германия от 3 ° К до точки плавления. Физический обзор 134, 4А, 1964 г.

7. Бербер С., Квон Ю. и Томанек Д. Необычно высокая теплопроводность углеродных нанотрубок. Physical Review Letters, том 84, № 20, с. 4613-4616, 2000 г.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *