Удельная теплоемкость обозначается буквой: Удельная теплоёмкость — Википедия – Конспект «Количество теплоты. Удельная теплоёмкость»

Содержание

Конспект «Количество теплоты. Удельная теплоёмкость»

«Количество теплоты. Удельная теплоёмкость»



Количество теплоты

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

Количество теплоты – это изменение внутренней энергии тела в процессе теплопередачи без совершения работы.  Количество теплоты обозначают буквой Q.

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах — джоулях (Дж), как и всякий вид энергии.

Количество теплоты

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии — калория (кал), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты — соотношение между калорией и джоулем:

1 кал = 4,2 Дж.

количество теплоты

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты 2

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.



Удельная теплоёмкость

Удельная теплоёмкость – это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты Q, необходимое для нагревания тела массой m от температуры t1°С до температуры t2°С, равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t2 — t1

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Удельная теплоёмкость


Это конспект по теме «Количество теплоты. Удельная теплоёмкость». Выберите дальнейшие действия:

 

Удельная теплоёмкость — урок. Физика, 8 класс.

Для того чтобы нагреть на определённую величину тела, взятые при одинаковой температуре, изготовленные из различных веществ, но имеющие одинаковую массу, требуется разное количество теплоты.

Пример:

Для нагревания \(1\) кг воды на \(1 \)°С требуется количество теплоты, равное \(4200\) Дж. А если нагревать \(1\) кг цинка на \(1\) °С, то потребуется всего \(400\) Дж. 

Физическая величина, численно равная количеству теплоты, которое необходимо передать веществу массой \(1\) кг для того, чтобы его температура изменилась на \(1\) °С, называется удельной теплоёмкостью вещества.

Обрати внимание!

Удельная теплоёмкость обозначается буквой \(с\) и измеряется в Дж/(кг·°С).

Пример:

Удельная теплоёмкость серебра равна \(250\) Дж/(кг·°С). Это означает, что для нагревания серебра массой \(1\) кг на \(1\) °С необходимо количество теплоты, равное \(250\) Дж.

При охлаждении серебра массой \(1\) кг на \(1\) °С выделится количество теплоты, равное \(250\) Дж.

Это означает, что если меняется температура серебра массой \(1\) кг на \(1\) °С, то оно или поглощает, или выделяет количество теплоты, равное \(250\) Дж.

Таблица 1. Удельная теплоёмкость некоторых веществ.

 

Твёрдые вещества

Вещество

\(c\),

Дж/(кг·°С)

Алюминий

\(920\)

Бетон

\(880\)

Дерево

\(2700\)

Железо,

сталь

\(460\)

Золото

\(130\)

Кирпич

\(750\)

Латунь

\(380\)

Лёд

\(2100\)

Медь

\(380\)

Нафталин

\(1300\)

Олово

\(250\)

Парафин

\(3200\)

Песок

\(970\)

Платина

\(130\)

Свинец

\(120\)

Серебро

\(250\)

Стекло

\(840\)

Цемент

\(800\)

Цинк

\(400\)

Чугун

\(550\)

Сера

\(710\)

 

Жидкости

Вещество

\(c\),

Дж/(кг·°C)

Вода

\(4200\)

Глицерин

\(2400\)

Железо

\(830\)

Керосин

\(2140\)

Масло

подсолнечное

\(1700\)

Масло

трансформаторное

\(2000\)

Ртуть

\(120\)

Спирт

этиловый

\(2400\)

Эфир

серный

\(2300\)

 

Газы (при постоянном давлении и температуре \(20\) °С)

Вещество

\(c\),

Дж/(кг·°C)

Азот

\(1000\)

Аммиак

\(2100\)

Водород

\(14300\)

Водяной

пар

\(2200\)

Воздух

\(1000\)

Гелий

\(5200\)

Кислород

\(920\)

Углекислый

газ

\(830\)

 

Удельная теплоемкость реальных газов, в отличие от идеальных газов, зависит от давления и температуры. И если зависимостью удельной теплоемкости реальных газов от давления в практических задачах можно пренебречь, то зависимость удельной теплоемкости газов от температуры необходимо учитывать, поскольку она очень существенна.

 

Обрати внимание!

Удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.

Пример:

Вода в жидком состоянии имеет удельную теплоёмкость, равную \(4200\) Дж/(кг·°С), в твёрдом состоянии (лёд) — \(2100\) Дж/(кг·°С), в газообразном состоянии (водяной пар) — \(2200\) Дж/(кг·°С).

Вода — вещество особенное, обладающее самой высокой среди жидкостей удельной теплоёмкостью. Но самое интересное, что теплоёмкость воды снижается при температуре от \(0\) °С до \(37\) °С и снова растёт при дальнейшем нагревании.

 

 

В связи с этим вода в морях и океанах, нагреваясь летом, поглощает из окружающей среды огромное количество теплоты. А зимой вода остывает и отдаёт в окружающую среду большое количество теплоты. Поэтому в районах, расположенных вблизи водоёмов, летом не бывает очень жарко, а зимой очень холодно.

 

 

Из-за высокой удельной теплоёмкости воду широко используют в технике и быту. Например, в отопительных системах домов, при охлаждении деталей во время их обработки на станках, в медицине (в грелках) и др.

 

 

Именно благодаря высокой удельной теплоёмкости вода является одним из лучших средств для борьбы с огнём. Соприкасаясь с пламенем, она моментально превращается в пар, отнимая большое количество теплоты у горящего предмета.

 

 

Помимо непосредственного отвода тепла, вода гасит пламя ещё и косвенным образом. Водяной пар, образующийся при контакте с огнём, окутывает горящее тело, предотвращая поступление кислорода, без которого горение невозможно.

Какой водой эффективнее тушить огонь: горячей или холодной? Горячая вода тушит огонь быстрее, чем холодная. Дело в том, что нагретая вода скорее превратится в пар, а значит, и отсечёт поступление воздуха к горящему объекту.

 

Источники:

Пёрышкин А.В. Физика, 8 кл.: учебник. — М.: Дрофа, 2013. — 237 с.

www.infourok.ru

www.puzzleit.ru

www.libma.ru

www.englishhelponline.files.wordpress.com

www.avd16.ru

Теплоёмкость — Википедия

Материал из Википедии — свободной энциклопедии

Теплоёмкость — ко­ли­че­ст­во те­п­ло­ты, по­гло­щае­мой (вы­де­ляе­мой) те­лом в про­цес­се на­гре­ва­ния (ос­ты­ва­ния) на 1 кельвин. Более точно, теплоёмкость — физическая величина, определяемая как отношение количества теплоты δQ{\displaystyle \delta Q}, поглощаемой/выделяемой термодинамической системой при бесконечно малом изменении её температуры T{\displaystyle T}, к величине этого изменения dT{\displaystyle \mathrm {d} T}[1][2][3][4][5]:

C=δQdT.{\displaystyle C={\delta Q \over \mathrm {d} T}.}

Малое количество теплоты обозначается δQ{\displaystyle \delta Q} (а не dQ{\displaystyle \mathrm {d} Q}), чтобы подчеркнуть, что это не дифференциал параметра состояния (в отличие, например, от dT{\displaystyle \mathrm {d} T}), а функция процесса. Поэтому и теплоёмкость — это характеристика процесса перехода между двумя состояниями термодинамической системы

[6], которая зависит и от пути процесса (например, от проведения его при постоянном объёме или постоянном давлении)[7][8], и от способа нагревания/охлаждения (квазистатического или нестатического)[7][9]. Неоднозначность в определении теплоёмкости[10] на практике устранят тем, что выбирают и фиксируют путь квазистатического процесса (обычно оговаривается, что процесс происходит при постоянном давлении, равным атмосферному). При однозначном выборе процесса теплоёмкость становится параметром состояния[11][12] и теплофизическим свойством вещества, образующего термодинамическую систему
[13]
.

Удельная, молярная и объёмная теплоёмкости[править | править код]

Очевидно, что чем больше масса тела, тем больше требуется теплоты для его нагревания, и теплоёмкость тела пропорциональна количеству вещества, содержащегося в нём. Количество вещества может характеризоваться массой или количеством молей. Поэтому удобно пользоваться понятиями удельной теплоёмкости (теплоёмкости единицы массы тела):

c=Cm{\displaystyle c={C \over m}}

и молярной теплоёмкости (теплоёмкости одного моля вещества):

Cμ=Cν,{\displaystyle C_{\mu }={C \over \nu },}

где ν=mμ{\displaystyle \nu ={m \over \mu }} — количество вещества в теле; m{\displaystyle m} — масса тела; μ{\displaystyle \mu } — молярная масса. Молярная и удельная теплоёмкости связаны соотношением Cμ=cμ{\displaystyle C_{\mu }=c\mu }[14][15].

Объёмная теплоёмкость (теплоёмкость единицы объёма тела):

C′=CV.{\displaystyle C’={C \over V}.}

Теплоёмкость для различных процессов и состояний вещества[править | править код]

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа).

Теплоёмкость идеального газа[править | править код]

Теплоёмкость системы невзаимодействующих частиц (например, идеального газа) определяется числом степеней свободы частиц.

Молярная теплоёмкость при постоянном объёме:

CV=dUdT=i2R,{\displaystyle C_{V}={dU \over dT}={\frac {i}{2}}R,}

где R{\displaystyle R} ≈ 8,31 Дж/(моль·К) — универсальная газовая постоянная, i{\displaystyle i} — число степеней свободы молекулы[14][15].

Молярная теплоёмкость при постоянном давлении связана с CV{\displaystyle C_{V}} соотношением Майера:

CP=CV+R=i+22R.{\displaystyle C_{P}=C_{V}+R={{i+2} \over 2}R.}

Теплоёмкость кристаллов[править | править код]

{\displaystyle C_{P}=C_{V}+R={{i+2} \over 2}R.} Сравнение моделей Дебая и Эйнштейна для теплоёмкости твёрдого тела

Существует несколько теорий теплоёмкости твердого тела:

  1. ↑ Теплоёмкость. БРЭ, 2016.
  2. Булидорова Г. В. и др., Физическая химия, кн. 1, 2016, с. 41.
  3. Артемов А. В., Физическая химия, 2013, с. 14.
  4. Ипполитов Е. Г. и др., Физическая химия, 2005, с. 20.
  5. Сивухин Д. В., Термодинамика и молекулярная физика, 2006, с. 65.
  6. Сивухин Д. В., Термодинамика и молекулярная физика, 2006, с. 66.
  7. 1 2 Лифшиц Е. М., Теплоёмкость, 1992.
  8. Белов Г. В., Термодинамика, ч. 1, 2017, с. 94.
  9. Лифшиц Е. М., Теплоёмкость, 1976.
  10. Базаров И. П., Термодинамика, 2010, с. 39.
  11. ↑ Борщевский А. Я., Физическая химия, т. 1, 2017, с. 115.
  12. Кубо Р., Термодинамика, 1970, с. 22.
  13. Беляев Н. М., Термодинамика, 1987, с. 5.
  14. 1 2 Никеров. В. А. Физика: учебник и практикум для академического бакалавриата. — Юрайт, 2015. — С. 127—129. — 415 с. — ISBN 978-5-9916-4820-2.
  15. 1 2 Ильин В. А. Физика: учебник и практикум для прикладного бакалавриата. — Юрайт, 2016. — С. 142—143. — 399 с. — ISBN 978-5-9916-6343-4.
  • Артемов А. В. Физическая химия. — М.: Академия, 2013. — 288 с. — (Бакалавриат). — ISBN 978-5-7695-9550-9.
  • Базаров И. П. Термодинамика. — 5-е изд. — СПб.—М.—Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3. (недоступная ссылка)
  • Белов Г. В. Термодинамика. Часть 1. — 2-е изд., испр. и доп. — М.: Юрайт, 2017. — 265 с. — (Бакалавр. Академический курс). — ISBN 978-5-534-02731-0. (недоступная ссылка)
  • Беляев Н. М. Термодинамика. — Киев: Вища школа, 1987. — 344 с.
  • Борщевский А. Я. Физическая химия. Том 1 online. Общая и химическая термодинамика. — М.: Инфра-М, 2017. — 868 с. — (Высшее образование: Бакалавриат). — ISBN 978-5-16-104227-4. (недоступная ссылка)
  • Булидорова Г. В., Галяметдинов Ю. Г., Ярошевская Х. М., Барабанов В. П. Физическая химия. Книга 1. Основы химической термодинамики. Фазовые равновесия. — М.: КДУ; Университетская книга, 2016. — 516 с. — ISBN 978-5-91304-600-0.
  • Ипполитов Е. Г., Артемов А. В., Батраков В.В. Физическая химия / Под ред. Е. Г. Ипполитова. — М.: Академия, 2005. — 448 с. — (Высшее профессиональное образование). — ISBN 978-5-7695-1456-6.
  • Кубо Р. Термодинамика. — М.: Мир, 1970. — 304 с. (недоступная ссылка)
  • Лифшиц Е. М. Теплоёмкость // Физическая энциклопедия / Ред. А. М. Прохоров. — М.: Большая Советская Энциклопедия, 1992. — Т. 5. — С. 77–78.
  • Лифшиц Е. М. Теплоёмкость // Большая советская энциклопедия / Ред. А. М. Прохоров. — 3-е издание. — М.: Большая Советская Энциклопедия, 1976. — Т. 25. — С. 451.
  • Сивухин Д. В. Общий курс физики. — Издание 5-е, исправленное. — М.: Физматлит, 2006. — Т. II. Термодинамика и молекулярная физика. — 544 с. — ISBN 5-9221-0601-5.
  • Теплоемкость // Большая российская энциклопедия. — М.: Большая российская энциклопедия, 2016. — Т. 32. — С. 54.

Удельная теплоёмкость — это… Что такое Удельная теплоёмкость?

Уде́льная теплоёмкость — физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин. Удельная теплоемкость обозначается буквой c и измеряется в Дж/кг*Кельвин.

Единицей СИ для удельной теплоёмкости является джоуль на килограмм-кельвин. Следовательно, удельную теплоёмкость можно рассматривать как теплоёмкость единицы массы вещества. На значение удельной теплоёмкости влияет температура вещества. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.

Формула расчёта удельной теплоёмкости: , где  — удельная теплоёмкость,  — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении),  — масса нагреваемого (охлаждающегося) вещества,  — разность конечной и начальной температур вещества.

Значения удельной теплоёмкости некоторых веществ

Таблица I: Стандартные значения удельной теплоёмкостиВнимание: Здесь указана удельная теплоёмкость с использованием единицизмерения температуры в Кельвинах(К).
ЭлементАгрегатное состояниеУдельная
теплоёмкость
Дж/(г·K)
воздух (сухой)газ1,005
воздух (100 % влажность)газ1,0301
алюминийтвёрдое тело0,930
бериллийтвёрдое тело1,8245
латуньтвёрдое тело0,377
оловотвёрдое тело0,218
медьтвёрдое тело0,385
стальтвёрдое тело0,500
алмазтвёрдое тело0,502
этанолжидкость2,460
золототвёрдое тело0,129
графиттвёрдое тело0,720
гелийгаз5,190
водородгаз14,300
железотвёрдое тело0,444
свинецтвёрдое тело0,130
чугунтвёрдое тело0,540
вольфрамтвёрдое тело0,134
литийтвёрдое тело3,582
ртутьжидкость0,139
азотгаз1,042
Нефтяные масла (фракция нефти) зависит от углеводородных составляющихжидкость1,67 — 2,01
кислородгаз0,920
кварцевое стеклотвёрдое тело0,703
вода 373К (100 °C)газ2,020
сусло пивноежидкость3,927
водажидкость4,183
лёдтвёрдое тело2,060
Значения приведены для стандартных условий, если это не оговорено особо.
Таблица II: Значения удельной теплоёмкости для некоторых строительных материалов
ВеществоАгрегатное состояниеУдельная
теплоёмкость
кДж*(кг−1·K−1)
Объёмная
теплоёмкость
кДж*(дм³−1·K−1)
асфальттвёрдое тело0,921,2
полнотелый кирпичтвёрдое тело0,841,344
силикатный кирпичтвёрдое тело11,7
бетонтвёрдое тело0,881,7
кронглас (стекло)твёрдое тело0,671,709
флинт (стекло)твёрдое тело0,5032,1
оконное стеклотвёрдое тело0,842,1
граниттвёрдое тело0,7902,1
гипствёрдое тело1,092,507
мрамор, слюдатвёрдое тело0,8802,4
песоктвёрдое тело0,8351,2
стальтвёрдое тело0,473,713
почватвёрдое тело0,80
древесинатвёрдое тело1,71

См. также

Примечания

Литература

Ссылки

Есть более полная статья
Question book-4.svgВ этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 19 ноября 2011.

Удельная теплота плавления — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 июля 2019; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 июля 2019; проверки требуют 2 правки.

Уде́льная теплота́ плавле́ния (также: энтальпия плавления; также существует равнозначное понятие уде́льная теплота́ кристаллиза́ции) — количество теплоты, которое необходимо сообщить одной единице массы кристаллического вещества в равновесном изобарно-изотермическом процессе, чтобы перевести его из твёрдого (кристаллического) состояния в жидкое (то же количество теплоты выделяется при кристаллизации вещества).

Единица измерения — Дж/кг. Теплота плавления — частный случай теплоты термодинамического фазового перехода.

Удельная теплота плавления обозначается буквой λ{\displaystyle \lambda } (греческая буква лямбда). Формула расчёта удельной теплоты плавления:

λ=Qm,{\displaystyle \lambda ={\frac {Q}{m}},}

где Q{\displaystyle Q} — количество теплоты, полученное веществом при плавлении (или выделившееся при кристаллизации), m{\displaystyle m} — масса плавящегося (кристаллизующегося) вещества. Удельная теплота плавления всегда положительна; единственное известное исключение — гелий под высоким давлением[1][2].

Значения удельной теплоты плавления некоторых веществ[править | править код]

  • Енохович А. С. Краткий справочник по физике. — М.: «Высшая школа», 1976. — С. 114. — 288 с.
  1. ↑ Atkins, Peter & Jones, Loretta (2008), Chemical Principles: The Quest for Insight (4th ed.), W. H. Freeman and Company, с. 236, ISBN 0-7167-7355-4 
  2. Hoffer J. K., Gardner W. R., Waterfield C. G., Phillips N. E. Thermodynamic properties of 4He. II. The bcc phase and the P-T and VT phase diagrams below 2 K (англ.) // Journal of Low Temperature Physics (англ.)русск. : journal. — 1976. — April (vol. 23, no. 1). — P. 63—102. — DOI:10.1007/BF00117245. — Bibcode: 1976JLTP…23…63H.

Список обозначений в физике — Википедия

СимволЗначение и происхождение
A{\displaystyle A}Площадь (лат. area), векторный потенциал[1], работа (нем. Arbeit), амплитуда (лат. amplitudo), параметр вырождения, Работа выхода (нем. Austrittsarbeit), коэффициент Эйнштейна для спонтанного излучения, массовое число
a{\displaystyle a}Ускорение (лат. acceleratio), амплитуда (лат. amplitudo), активность (лат. activitas), коэффициент температуропроводности, вращательная способность, радиус Бора, натуральный показатель поглощения света
B{\displaystyle B}Вектор магнитной индукции[1], барионный заряд (англ. baryon number), удельная газовая постоянная, вириальний коэффициент, функция Бриллюэна (англ. Brillion function), ширина интерференционной полосы (нем. Breite), яркость, постоянная Керра, коэффициент Эйнштейна для вынужденного излучения, коэффициент Эйнштейна для поглощения, вращательная постоянная молекулы
b{\displaystyle b}Вектор магнитной индукции[1], красивый кварк (англ. beauty/bottom quark), постоянная Вина, ширина распада (нем. Breite)
C{\displaystyle C}Электрическая ёмкость (англ. capacitance), теплоёмкость (англ. heatcapacity), постоянная интегрирования (лат. constans), очарование (чарм, шарм; англ. charm), коэффициенты Клебша — Гордана (англ. Clebsch-Gordan coefficients), постоянная Коттона — Мутона (англ. Cotton-Mouton constant), кривизна (лат. curvatura)
c{\displaystyle c}Скорость света (лат. celeritas), скорость звука (лат. celeritas), Теплоёмкость (англ. heat capacity), очарованный кварк (англ. charm quark), концентрация (англ. concentration), первая радиационная постоянная, вторая радиационная постоянная, удельная теплоёмкость
D{\displaystyle D}Вектор электрической индукции[1] (англ. electric displacement field), Коэффициент диффузии (англ. diffusion coefficient), Оптическая сила (англ. dioptric power), коэффициент прохождения, тензор квадрупольного электрического момента, угловая дисперсия спектрального прибора, линейная дисперсия спектрального прибора, коэффициент прозрачности потенциального барьера, D-мезон (англ. D meson), Диаметр (лат. diametros, др.-греч. διάμετρος)
d{\displaystyle d}Расстояние (лат. distantia), Диаметр (лат. diametros, др.-греч. διάμετρος), дифференциал (лат. differentia), нижний кварк (англ. down quark), дипольный момент (англ. dipole moment), период дифракционной решётки, толщина (нем. Dicke)
E{\displaystyle E}Энергия (лат. energīa), напряжённость электрического поля[1] (англ. electric field), Электродвижущая сила (англ. electromotive force), магнитодвижущая сила, освещенность (фр. éclairement lumineux), излучательная способность тела, модуль Юнга
e{\displaystyle e}Основание натуральных логарифмов (2,71828…), электрон (англ. electron), элементарный электрический заряд (англ. elementaty electric charge), константа электромагнитного взаимодействия
F{\displaystyle F}Сила (лат. fortis), постоянная Фарадея (англ. Faraday constant), свободная энергия Гельмгольца (нем. freie Energie), атомный фактор рассеяния, тензор электромагнитного поля, магнитодвижущая сила, модуль сдвига, фокусное расстояние (англ. focal length)
f{\displaystyle f}Частота (лат. frequentia), функция (лат. functia), летучесть (нем. Flüchtigkeit), сила (лат. fortis), фокусное расстояние (англ. focal length), сила осциллятора, коэффициент трения
G{\displaystyle G}Гравитационная постоянная (англ. gravitational constant), тензор Эйнштейна, свободная энергия Гиббса (англ. Gibbs free energy), метрика пространства-времени, вириал, парциальная мольная величина, поверхностная активность адсорбата, модуль сдвига, полный импульс поля, Глюон (англ. gluon), константа Ферми, квант проводимости, электрическая проводимость, Вес (нем. Gewichtskraft)
g{\displaystyle g}Ускорение свободного падения (англ. gravitational acceleration), Глюон (англ. gluon), фактор Ланде, фактор вырождения, весовая концентрация, Гравитон (англ. graviton), метрический тензор
H{\displaystyle H}Напряжённость магнитного поля[1], эквивалентная доза, энтальпия (англ. heat contents или от греческой буквы «эта», H — ενθαλπος[2]), гамильтониан (англ. Hamiltonian), функция Ганкеля (англ. Hankel function), функция Хевисайда (англ. Heaviside step function), бозон Хиггса (англ. Higgs boson), экспозиция, полиномы Эрмита (англ. Hermite polynomials)
h{\displaystyle h}Высота (нем. Höhe), постоянная Планка (нем. Hilfsgröße[3]), спиральность (англ. helicity)
I{\displaystyle I}сила тока (фр. intensité de courant), интенсивность звука (лат. intēnsiō), интенсивность света (лат. intēnsiō), сила излучения, сила света, момент инерции, вектор намагниченности
i{\displaystyle i}Мнимая единица (лат. imaginarius), единичный вектор (координатный орт)
J{\displaystyle J}Плотность тока (также 4-вектор плотности тока), момент импульса, функция Бесселя, момент инерции, полярный момент инерции сечения, вращательное квантовое число, сила света, J/ψ-мезон
j{\displaystyle j}Мнимая единица (в электротехнике и радиоэлектронике), плотность тока (также 4-вектор плотности тока), единичный вектор (координатный орт)
K{\displaystyle K}Каона (англ. kaons), термодинамическая константа равновесия, коэффициент электронной теплопроводности металлов, модуль всестороннего сжатия, механический импульс, постоянная Джозефсона, кинетическая энергия
k{\displaystyle k}Коэффициент (нем. Koeffizient), постоянная Больцмана, теплопроводность, волновое число, единичный вектор (координатный орт)
L{\displaystyle L}Момент импульса, дальность полёта, удельная теплота парообразования и конденсации, индуктивность, функция Лагранжа (англ. Lagrangian), классическая функция Ланжевена (англ. Langevin function), число Лоренца (англ. Lorenz number), уровень звукового давления, полиномы Лагерра (англ. Laguerre polynomials), орбитальное квантовое число, энергетическая яркость, яркость (англ. luminance)
l{\displaystyle l}Длина (англ. length), длина свободного пробега (англ. length), орбитальное квантовое число, радиационная длина
M{\displaystyle M}Момент силы, масса (лат. massa, от др.-греч. μᾶζα, кусок теста), вектор намагниченности (англ. magnetization), крутящий момент, число Маха, взаимная индуктивность, магнитное квантовое число, молярная масса
m{\displaystyle m}Масса, магнитное квантовое число (англ. magnetic quantum number), магнитный момент (англ. magnetic moment), эффективная масса, дефект массы, масса Планка
N{\displaystyle N}Количество (лат. numerus), постоянная Авогадро, число Дебая, полная мощность излучения, увеличение оптического прибора, концентрация, мощность, сила нормальной реакции
n{\displaystyle n}Показатель преломления, количество вещества, нормальный вектор, единичный вектор, нейтрон (англ. neutron), количество (англ. number), основное квантовое число, частота вращения, концентрация, показатель политропы, постоянная Лошмидта
O{\displaystyle O}Начало координат (лат. origo)
P{\displaystyle P}Мощность (лат. potestas), давление (лат. pressūra), полиномы Лежандра, вес (фр. poids), сила тяжести, вероятность (лат. probabilitas), поляризуемость, вероятность перехода, импульс (также 4-импульс, обобщённый импульс; лат. petere)
p{\displaystyle p}Импульс (также 4-импульс, обобщённый импульс; лат. petere), протон (англ. proton), дипольный момент, волновой параметр, давление, число полюсов, плотность.
Q{\displaystyle Q}Электрический заряд (англ. quantity of electricity), количество теплоты (англ. quantity of heat), объёмный расход, обобщённая сила, хладопроизводительность, энергия излучения, световая энергия, добротность (англ. quality factor), нулевой инвариант Аббе, квадрупольный электрический момент (англ. quadrupole moment), энергия ядерной реакции
q{\displaystyle q}Электрический заряд, обобщённая координата, количество теплоты (англ. quantity of heat), эффективный заряд, добротность
R{\displaystyle R}Электрическое сопротивление (англ. resistance), универсальная газовая постоянная, постоянная Ридберга (англ. R ydberg constant), постоянная фон Клитцинга, коэффициент отражения, сопротивление излучения (англ. resistance), разрешение (англ. resolution), светимость, пробег частицы, расстояние
r{\displaystyle r}Радиус (лат. radius), радиус-вектор, радиальная полярная координата, удельная теплота фазового перехода, удельная рефракция (лат. rēfractiō), расстояние
S{\displaystyle S}Площадь поверхности (англ. surface area), энтропия[4], действие, спин (англ. spin), спиновое квантовое число (англ. spin quantum number), странность (англ. strangeness), главная функция Гамильтона, матрица рассеяния (англ. scattering matrix), оператор эволюции, вектор Пойнтинга
s{\displaystyle s}Перемещение (итал. spostamento), странный кварк (англ. strange quark), путь, пространственно-временной интервал (англ. spacetime interval), оптическая длина пути
T{\displaystyle T}Температура (лат. temperātūra), период (лат. tempus), кинетическая энергия, критическая температура, терм, период полураспада, критическая энергия, изоспин
t{\displaystyle t}Время (лат. tempus), истинный кварк (англ. true quark), правдивость (англ. truth), планковское время
U{\displaystyle U}Внутренняя энергия, потенциальная энергия, вектор Умова, потенциал Леннард-Джонса, потенциал Морзе, 4-скорость, электрическое напряжение
u{\displaystyle u}Верхний кварк (англ. up quark), скорость, подвижность, удельная внутренняя энергия, групповая скорость
V{\displaystyle V}Объём (фр. volume), электрическое напряжение (англ. voltage), потенциальная энергия, видность полосы интерференции, постоянная Верде (англ. Verdet constant)
v{\displaystyle v}Скорость (лат. vēlōcitās), фазовая скорость, удельный объём
W{\displaystyle W}Механическая работа (англ. work), работа выхода, W-бозон, энергия, энергия связи атомного ядра, мощность
w{\displaystyle w}Скорость, плотность энергии, коэффициент внутренней конверсии, ускорение
X{\displaystyle X}Реактивное сопротивление, продольное увеличение, X-бозон
x{\displaystyle x}Переменная, перемещение, абсцисса (декартова координата), молярная концентрация, постоянная ангармоничности, расстояние
Y{\displaystyle Y}Гиперзаряд, силовая функция, линейное увеличение, сферические функции, Y-бозон
y{\displaystyle y}ордината (декартова координата)
Z{\displaystyle Z}Импеданс, Z-бозон, атомный номер или зарядовое число ядра (нем. Ordnungszahl), статистическая сумма (нем. Zustandssumme), вектор Герца, валентность, полное электрическое сопротивление (импеданс), угловое увеличение, волновое сопротивление вакуума
z{\displaystyle z}аппликата (декартова координата)

Таблицы удельной теплоемкости веществ: газов, жидкостей, металлов, продуктов

АБС пластик1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках840
Алмаз502
Аргиллит700…1000
Асбест волокнистый1050
Асбестоцемент1500
Асботекстолит1670
Асбошифер837
Асфальт920…2100
Асфальтобетон1680
Аэрогель (Aspen aerogels)700
Базальт850…920
Барит461
Береза1250
Бетон710…1130
Битумоперлит1130
Битумы нефтяные строительные и кровельные1680
Бумага1090…1500
Вата минеральная920
Вата стеклянная800
Вата хлопчатобумажная1675
Вата шлаковая750
Вермикулит840
Вермикулитобетон840
Винипласт1000
Войлок шерстяной1700
Воск2930
Газо- и пенобетон, газо- и пеносиликат, газо- и пенозолобетон840
Гетинакс1400
Гипс формованный сухой1050
Гипсокартон950
Глина750
Глина огнеупорная800
Глинозем700…840
Гнейс (облицовка)880
Гравий (наполнитель)850
Гравий керамзитовый840
Гравий шунгизитовый840
Гранит (облицовка)880…920
Графит708
Грунт влажный (почва)2010
Грунт лунный740
Грунт песчаный900
Грунт сухой850
Гудрон1675
Диабаз800…900
Динас737
Доломит600…1500
Дуб2300
Железобетон840
Железобетон набивной840
Зола древесная750
Известняк (облицовка)850…920
Изделия из вспученного перлита на битумном связующем1680
Ил песчаный1000…2100
Камень строительный920
Капрон2300
Карболит черный1900
Картон гофрированный1150
Картон облицовочный2300
Картон плотный1200
Картон строительный многослойный2390
Каучук натуральный1400
Кварц кристаллический836
Кварцит700…1300
Керамзит750
Керамзитобетон и керамзитопенобетон840
Кирпич динасовый905
Кирпич карборундовый700
Кирпич красный плотный840…880
Кирпич магнезитовый1055
Кирпич облицовочный880
Кирпич огнеупорный полукислый885
Кирпич силикатный750…840
Кирпич строительный800
Кирпич трепельный710
Кирпич шамотный930
Кладка «Поротон»900
Кладка бутовая из камней средней плотности880
Кладка газосиликатная880
Кладка из глиняного обыкновенного кирпича880
Кладка из керамического пустотного кирпича880
Кладка из силикатного кирпича880
Кладка из трепельного кирпича880
Кладка из шлакового кирпича880
Кокс порошкообразный1210
Корунд711
Краска масляная (эмаль)650…2000
Кремний714
Лава вулканическая840
Латунь400
Лед из тяжелой воды2220
Лед при температуре 0°С2150
Лед при температуре -100°С1170
Лед при температуре -20°С1950
Лед при температуре -60°С1700
Линолеум1470
Листы асбестоцементные плоские840
Листы гипсовые обшивочные (сухая штукатурка)840
Лузга подсолнечная1500
Магнетит586
Малахит740
Маты и полосы из стекловолокна прошивные840
Маты минераловатные прошивные и на синтетическом связующем840
Мел800…880
Миканит250
Мипора1420
Мрамор (облицовка)880
Настил палубный1100
Нафталин1300
Нейлон1600
Неопрен1700
Пакля2300
Парафин2890
Паркет дубовый1100
Паркет штучный880
Паркет щитовой880
Пемзобетон840
Пенобетон840
Пенопласт ПХВ-1 и ПВ-11260
Пенополистирол1340
Пенополистирол «Пеноплекс»1600
Пенополиуретан1470
Пеностекло или газостекло840
Пергамин1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки850
Перекрытие из железобетонных элементов со штукатуркой860
Перекрытие монолитное плоское железобетонное840
Перлитобетон840
Перлитопласт-бетон1050
Перлитофосфогелевые изделия1050
Песок для строительных работ840
Песок речной мелкий700…840
Песок речной мелкий (влажный)2090
Песок сахарный1260
Песок сухой800
Пихта2700
Пластмасса полиэфирная1000…2300
Плита пробковая1850
Плиты алебастровые750
Плиты древесно-волокнистые и древесно-стружечные (ДСП, ДВП)2300
Плиты из гипса840
Плиты из резольноформальдегидного пенопласта1680
Плиты из стеклянного штапельного волокна на синтетическом связующем840
Плиты камышитовые2300
Плиты льнокостричные изоляционные2300
Плиты минераловатные повышенной жесткости840
Плиты минераловатные полужесткие на крахмальном связующем840
Плиты торфяные теплоизоляционные2300
Плиты фибролитовые и арболит на портландцементе2300
Покрытие ковровое1100
Пол гипсовый бесшовный800
Поливинилхлорид (ПВХ)920…1200
Поликарбонат (дифлон)1100…1120
Полиметилметакрилат1200…1650
Полипропилен1930
Полистирол УПП1, ППС900
Полистиролбетон1060
Полихлорвинил1130…1200
Полихлортрифторэтилен920
Полиэтилен высокой плотности1900…2300
Полиэтилен низкой плотности1700
Портландцемент1130
Пробка2050
Пробка гранулированная1800
Раствор гипсовый затирочный900
Раствор гипсоперлитовый840
Раствор гипсоперлитовый поризованный840
Раствор известково-песчаный840
Раствор известковый920
Раствор сложный (песок, известь, цемент)840
Раствор цементно-перлитовый840
Раствор цементно-песчаный840
Раствор цементно-шлаковый840
Резина мягкая1380
Резина пористая2050
Резина твердая обыкновенная1350…1400
Рубероид1500…1680
Сера715
Сланец700…1600
Слюда880
Смола эпоксидная800…1100
Снег лежалый при 0°С2100
Снег свежевыпавший2090
Сосна и ель2300
Сосна смолистая 15% влажности2700
Стекло зеркальное (зеркало)780
Стекло кварцевое890
Стекло лабораторное840
Стекло обыкновенное, оконное670
Стекло флинт490
Стекловата800
Стекловолокно840
Стеклопластик800
Стружка деревянная прессованая1080
Текстолит1470…1510
Толь1680
Торф1880
Торфоплиты2100
Туф (облицовка)750…880
Туфобетон840
Уголь древесный960
Уголь каменный1310
Фанера клееная2300…2500
Фарфор750…1090
Фибролит (серый)1670
Циркон670
Шамот825
Шифер750
Шлак гранулированный750
Шлак котельный700…750
Шлакобетон800
Шлакопемзобетон (термозитобетон)840
Шлакопемзопено- и шлакопемзогазобетон840
Штукатурка гипсовая840
Штукатурка из полистирольного раствора1200
Штукатурка известковая950
Штукатурка известковая с каменной пылью920
Штукатурка перлитовая1130
Штукатурка фасадная с полимерными добавками880
Шунгизитобетон840
Щебень и песок из перлита вспученного840
Щебень из доменного шлака, шлаковой пемзы и аглопорита840
Эбонит1430
Эковата2300
Этрол1500…1800

Отправить ответ

avatar
  Подписаться  
Уведомление о

Удельная теплоемкость обозначается буквой: Удельная теплоёмкость — Википедия – Конспект «Количество теплоты. Удельная теплоёмкость»

Содержание

Конспект «Количество теплоты. Удельная теплоёмкость»

«Количество теплоты. Удельная теплоёмкость»



Количество теплоты

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

Количество теплоты – это изменение внутренней энергии тела в процессе теплопередачи без совершения работы.  Количество теплоты обозначают буквой Q.

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах — джоулях (Дж), как и всякий вид энергии.

Количество теплоты

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии — калория (кал), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты — соотношение между калорией и джоулем:

1 кал = 4,2 Дж.

количество теплоты

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты 2

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.



Удельная теплоёмкость

Удельная теплоёмкость – это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты Q, необходимое для нагревания тела массой m от температуры t1°С до температуры t2°С, равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t2 — t1

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Удельная теплоёмкость


Это конспект по теме «Количество теплоты. Удельная теплоёмкость». Выберите дальнейшие действия:

 

Удельная теплоёмкость — урок. Физика, 8 класс.

Для того чтобы нагреть на определённую величину тела, взятые при одинаковой температуре, изготовленные из различных веществ, но имеющие одинаковую массу, требуется разное количество теплоты.

Пример:

Для нагревания \(1\) кг воды на \(1 \)°С требуется количество теплоты, равное \(4200\) Дж. А если нагревать \(1\) кг цинка на \(1\) °С, то потребуется всего \(400\) Дж. 

Физическая величина, численно равная количеству теплоты, которое необходимо передать веществу массой \(1\) кг для того, чтобы его температура изменилась на \(1\) °С, называется удельной теплоёмкостью вещества.

Обрати внимание!

Удельная теплоёмкость обозначается буквой \(с\) и измеряется в Дж/(кг·°С).

Пример:

Удельная теплоёмкость серебра равна \(250\) Дж/(кг·°С). Это означает, что для нагревания серебра массой \(1\) кг на \(1\) °С необходимо количество теплоты, равное \(250\) Дж.

При охлаждении серебра массой \(1\) кг на \(1\) °С выделится количество теплоты, равное \(250\) Дж.

Это означает, что если меняется температура серебра массой \(1\) кг на \(1\) °С, то оно или поглощает, или выделяет количество теплоты, равное \(250\) Дж.

Таблица 1. Удельная теплоёмкость некоторых веществ.

 

Твёрдые вещества

Вещество

\(c\),

Дж/(кг·°С)

Алюминий

\(920\)

Бетон

\(880\)

Дерево

\(2700\)

Железо,

сталь

\(460\)

Золото

\(130\)

Кирпич

\(750\)

Латунь

\(380\)

Лёд

\(2100\)

Медь

\(380\)

Нафталин

\(1300\)

Олово

\(250\)

Парафин

\(3200\)

Песок

\(970\)

Платина

\(130\)

Свинец

\(120\)

Серебро

\(250\)

Стекло

\(840\)

Цемент

\(800\)

Цинк

\(400\)

Чугун

\(550\)

Сера

\(710\)

 

Жидкости

Вещество

\(c\),

Дж/(кг·°C)

Вода

\(4200\)

Глицерин

\(2400\)

Железо

\(830\)

Керосин

\(2140\)

Масло

подсолнечное

\(1700\)

Масло

трансформаторное

\(2000\)

Ртуть

\(120\)

Спирт

этиловый

\(2400\)

Эфир

серный

\(2300\)

 

Газы (при постоянном давлении и температуре \(20\) °С)

Вещество

\(c\),

Дж/(кг·°C)

Азот

\(1000\)

Аммиак

\(2100\)

Водород

\(14300\)

Водяной

пар

\(2200\)

Воздух

\(1000\)

Гелий

\(5200\)

Кислород

\(920\)

Углекислый

газ

\(830\)

 

Удельная теплоемкость реальных газов, в отличие от идеальных газов, зависит от давления и температуры. И если зависимостью удельной теплоемкости реальных газов от давления в практических задачах можно пренебречь, то зависимость удельной теплоемкости газов от температуры необходимо учитывать, поскольку она очень существенна.

 

Обрати внимание!

Удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.

Пример:

Вода в жидком состоянии имеет удельную теплоёмкость, равную \(4200\) Дж/(кг·°С), в твёрдом состоянии (лёд) — \(2100\) Дж/(кг·°С), в газообразном состоянии (водяной пар) — \(2200\) Дж/(кг·°С).

Вода — вещество особенное, обладающее самой высокой среди жидкостей удельной теплоёмкостью. Но самое интересное, что теплоёмкость воды снижается при температуре от \(0\) °С до \(37\) °С и снова растёт при дальнейшем нагревании.

 

 

В связи с этим вода в морях и океанах, нагреваясь летом, поглощает из окружающей среды огромное количество теплоты. А зимой вода остывает и отдаёт в окружающую среду большое количество теплоты. Поэтому в районах, расположенных вблизи водоёмов, летом не бывает очень жарко, а зимой очень холодно.

 

 

Из-за высокой удельной теплоёмкости воду широко используют в технике и быту. Например, в отопительных системах домов, при охлаждении деталей во время их обработки на станках, в медицине (в грелках) и др.

 

 

Именно благодаря высокой удельной теплоёмкости вода является одним из лучших средств для борьбы с огнём. Соприкасаясь с пламенем, она моментально превращается в пар, отнимая большое количество теплоты у горящего предмета.

 

 

Помимо непосредственного отвода тепла, вода гасит пламя ещё и косвенным образом. Водяной пар, образующийся при контакте с огнём, окутывает горящее тело, предотвращая поступление кислорода, без которого горение невозможно.

Какой водой эффективнее тушить огонь: горячей или холодной? Горячая вода тушит огонь быстрее, чем холодная. Дело в том, что нагретая вода скорее превратится в пар, а значит, и отсечёт поступление воздуха к горящему объекту.

 

Источники:

Пёрышкин А.В. Физика, 8 кл.: учебник. — М.: Дрофа, 2013. — 237 с.

www.infourok.ru

www.puzzleit.ru

www.libma.ru

www.englishhelponline.files.wordpress.com

www.avd16.ru

Удельная теплота плавления — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 июля 2019; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 июля 2019; проверки требуют 2 правки.

Уде́льная теплота́ плавле́ния (также: энтальпия плавления; также существует равнозначное понятие уде́льная теплота́ кристаллиза́ции) — количество теплоты, которое необходимо сообщить одной единице массы кристаллического вещества в равновесном изобарно-изотермическом процессе, чтобы перевести его из твёрдого (кристаллического) состояния в жидкое (то же количество теплоты выделяется при кристаллизации вещества).

Единица измерения — Дж/кг. Теплота плавления — частный случай теплоты термодинамического фазового перехода.

Удельная теплота плавления обозначается буквой λ{\displaystyle \lambda } (греческая буква лямбда). Формула расчёта удельной теплоты плавления:

λ=Qm,{\displaystyle \lambda ={\frac {Q}{m}},}

где Q{\displaystyle Q} — количество теплоты, полученное веществом при плавлении (или выделившееся при кристаллизации), m{\displaystyle m} — масса плавящегося (кристаллизующегося) вещества. Удельная теплота плавления всегда положительна; единственное известное исключение — гелий под высоким давлением[1][2].

Значения удельной теплоты плавления некоторых веществ[править | править код]

  • Енохович А. С. Краткий справочник по физике. —
    М.
    : «Высшая школа», 1976. — С. 114. — 288 с.
  1. ↑ Atkins, Peter & Jones, Loretta (2008), Chemical Principles: The Quest for Insight (4th ed.), W. H. Freeman and Company, с. 236, ISBN 0-7167-7355-4 
  2. Hoffer J. K., Gardner W. R., Waterfield C. G., Phillips N. E. Thermodynamic properties of 4He. II. The bcc phase and the P-T and VT phase diagrams below 2 K (англ.) // Journal of Low Temperature Physics (англ.)русск. : journal. — 1976. — April (vol. 23, no. 1). — P. 63—102. — DOI:10.1007/BF00117245. — Bibcode: 1976JLTP…23…63H.

Удельная теплоёмкость — это… Что такое Удельная теплоёмкость?

Уде́льная теплоёмкость — физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин. Удельная теплоемкость обозначается буквой c и измеряется в Дж/кг*Кельвин.

Единицей СИ для удельной теплоёмкости является джоуль на килограмм-кельвин. Следовательно, удельную теплоёмкость можно рассматривать как теплоёмкость единицы массы вещества. На значение удельной теплоёмкости влияет температура вещества. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.

Формула расчёта удельной теплоёмкости: , где  — удельная теплоёмкость,  — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении),  — масса нагреваемого (охлаждающегося) вещества,  — разность конечной и начальной температур вещества.

Значения удельной теплоёмкости некоторых веществ

Таблица I: Стандартные значения удельной теплоёмкостиВнимание: Здесь указана удельная теплоёмкость с использованием единицизмерения температуры в Кельвинах(К).
ЭлементАгрегатное состояниеУдельная
теплоёмкость
Дж/(г·K)
воздух (сухой)газ1,005
воздух (100 % влажность)газ1,0301
алюминийтвёрдое тело0,930
бериллийтвёрдое тело1,8245
латуньтвёрдое тело0,377
оловотвёрдое тело0,218
медьтвёрдое тело0,385
стальтвёрдое тело0,500
алмазтвёрдое тело0,502
этанолжидкость2,460
золототвёрдое тело0,129
графиттвёрдое тело0,720
гелийгаз5,190
водородгаз14,300
железотвёрдое тело0,444
свинецтвёрдое тело0,130
чугунтвёрдое тело0,540
вольфрамтвёрдое тело0,134
литийтвёрдое тело3,582
ртутьжидкость0,139
азотгаз1,042
Нефтяные масла (фракция нефти) зависит от углеводородных составляющихжидкость1,67 — 2,01
кислородгаз0,920
кварцевое стеклотвёрдое тело0,703
вода 373К (100 °C)газ2,020
сусло пивноежидкость3,927
водажидкость4,183
лёдтвёрдое тело2,060
Значения приведены для стандартных условий, если это не оговорено особо.
Таблица II: Значения удельной теплоёмкости для некоторых строительных материалов
ВеществоАгрегатное состояниеУдельная
теплоёмкость
кДж*(кг−1·K−1)
Объёмная
теплоёмкость
кДж*(дм³−1·K−1)
асфальттвёрдое тело0,921,2
полнотелый кирпичтвёрдое тело0,841,344
силикатный кирпичтвёрдое тело11,7
бетонтвёрдое тело0,881,7
кронглас (стекло)твёрдое тело0,671,709
флинт (стекло)твёрдое тело0,5032,1
оконное стеклотвёрдое тело0,842,1
граниттвёрдое тело0,7902,1
гипствёрдое тело1,092,507
мрамор, слюдатвёрдое тело0,8802,4
песоктвёрдое тело0,8351,2
стальтвёрдое тело0,473,713
почватвёрдое тело0,80
древесинатвёрдое тело1,71

См. также

Примечания

Литература

Ссылки

Есть более полная статья
Question book-4.svgВ этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 19 ноября 2011.

Теплоёмкость — Википедия

Материал из Википедии — свободной энциклопедии

Теплоёмкость — ко­ли­че­ст­во те­п­ло­ты, по­гло­щае­мой (вы­де­ляе­мой) те­лом в про­цес­се на­гре­ва­ния (ос­ты­ва­ния) на 1 кельвин. Более точно, теплоёмкость — физическая величина, определяемая как отношение количества теплоты δQ{\displaystyle \delta Q}, поглощаемой/выделяемой термодинамической системой при бесконечно малом изменении её температуры T{\displaystyle T}, к величине этого изменения dT{\displaystyle \mathrm {d} T}[1][2][3][4][5]:

C=δQdT.{\displaystyle C={\delta Q \over \mathrm {d} T}.}

Малое количество теплоты обозначается δQ{\displaystyle \delta Q} (а не dQ{\displaystyle \mathrm {d} Q}), чтобы подчеркнуть, что это не дифференциал параметра состояния (в отличие, например, от dT{\displaystyle \mathrm {d} T}), а функция процесса. Поэтому и теплоёмкость — это характеристика процесса перехода между двумя состояниями термодинамической системы[6], которая зависит и от пути процесса (например, от проведения его при постоянном объёме или постоянном давлении)[7][8], и от способа нагревания/охлаждения (квазистатического или нестатического)[7][9]. Неоднозначность в определении теплоёмкости[10] на практике устранят тем, что выбирают и фиксируют путь квазистатического процесса (обычно оговаривается, что процесс происходит при постоянном давлении, равным атмосферному). При однозначном выборе процесса теплоёмкость становится параметром состояния[11][12] и теплофизическим свойством вещества, образующего термодинамическую систему[13].

Удельная, молярная и объёмная теплоёмкости[править | править код]

Очевидно, что чем больше масса тела, тем больше требуется теплоты для его нагревания, и теплоёмкость тела пропорциональна количеству вещества, содержащегося в нём. Количество вещества может характеризоваться массой или количеством молей. Поэтому удобно пользоваться понятиями удельной теплоёмкости (теплоёмкости единицы массы тела):

c=Cm{\displaystyle c={C \over m}}

и молярной теплоёмкости (теплоёмкости одного моля вещества):

Cμ=Cν,{\displaystyle C_{\mu }={C \over \nu },}

где ν=mμ{\displaystyle \nu ={m \over \mu }} — количество вещества в теле; m{\displaystyle m} — масса тела; μ{\displaystyle \mu } — молярная масса. Молярная и удельная теплоёмкости связаны соотношением Cμ=cμ{\displaystyle C_{\mu }=c\mu }[14][15].

Объёмная теплоёмкость (теплоёмкость единицы объёма тела):

C′=CV.{\displaystyle C’={C \over V}.}

Теплоёмкость для различных процессов и состояний вещества[править | править код]

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа).

Теплоёмкость идеального газа[править | править код]

Теплоёмкость системы невзаимодействующих частиц (например, идеального газа) определяется числом степеней свободы частиц.

Молярная теплоёмкость при постоянном объёме:

CV=dUdT=i2R,{\displaystyle C_{V}={dU \over dT}={\frac {i}{2}}R,}

где R{\displaystyle R} ≈ 8,31 Дж/(моль·К) — универсальная газовая постоянная, i{\displaystyle i} — число степеней свободы молекулы[14][15].

Молярная теплоёмкость при постоянном давлении связана с CV{\displaystyle C_{V}} соотношением Майера:

CP=CV+R=i+22R.{\displaystyle C_{P}=C_{V}+R={{i+2} \over 2}R.}

Теплоёмкость кристаллов[править | править код]

{\displaystyle C_{P}=C_{V}+R={{i+2} \over 2}R.} Сравнение моделей Дебая и Эйнштейна для теплоёмкости твёрдого тела

Существует несколько теорий теплоёмкости твердого тела:

  1. ↑ Теплоёмкость. БРЭ, 2016.
  2. Булидорова Г. В. и др., Физическая химия, кн. 1, 2016, с. 41.
  3. Артемов А. В., Физическая химия, 2013, с. 14.
  4. Ипполитов Е. Г. и др., Физическая химия, 2005, с. 20.
  5. Сивухин Д. В., Термодинамика и молекулярная физика, 2006, с. 65.
  6. Сивухин Д. В., Термодинамика и молекулярная физика, 2006, с. 66.
  7. 1 2 Лифшиц Е. М., Теплоёмкость, 1992.
  8. Белов Г. В., Термодинамика, ч. 1, 2017, с. 94.
  9. Лифшиц Е. М., Теплоёмкость, 1976.
  10. Базаров И. П., Термодинамика, 2010, с. 39.
  11. ↑ Борщевский А. Я., Физическая химия, т. 1, 2017, с. 115.
  12. Кубо Р., Термодинамика, 1970, с. 22.
  13. Беляев Н. М., Термодинамика, 1987, с. 5.
  14. 1 2 Никеров. В. А. Физика: учебник и практикум для академического бакалавриата. — Юрайт, 2015. — С. 127—129. — 415 с. — ISBN 978-5-9916-4820-2.
  15. 1 2 Ильин В. А. Физика: учебник и практикум для прикладного бакалавриата. — Юрайт, 2016. — С. 142—143. — 399 с. — ISBN 978-5-9916-6343-4.
  • Артемов А. В. Физическая химия. — М.: Академия, 2013. — 288 с. — (Бакалавриат). — ISBN 978-5-7695-9550-9.
  • Базаров И. П. Термодинамика. — 5-е изд. — СПб.—М.—Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3. (недоступная ссылка)
  • Белов Г. В. Термодинамика. Часть 1. — 2-е изд., испр. и доп. — М.: Юрайт, 2017. — 265 с. — (Бакалавр. Академический курс). — ISBN 978-5-534-02731-0. (недоступная ссылка)
  • Беляев Н. М. Термодинамика. — Киев: Вища школа, 1987. — 344 с.
  • Борщевский А. Я. Физическая химия. Том 1 online. Общая и химическая термодинамика. — М.: Инфра-М, 2017. — 868 с. — (Высшее образование: Бакалавриат). — ISBN 978-5-16-104227-4. (недоступная ссылка)
  • Булидорова Г. В., Галяметдинов Ю. Г., Ярошевская Х. М., Барабанов В. П. Физическая химия. Книга 1. Основы химической термодинамики. Фазовые равновесия. — М.: КДУ; Университетская книга, 2016. — 516 с. — ISBN 978-5-91304-600-0.
  • Ипполитов Е. Г., Артемов А. В., Батраков В.В. Физическая химия / Под ред. Е. Г. Ипполитова. — М.: Академия, 2005. — 448 с. — (Высшее профессиональное образование). — ISBN 978-5-7695-1456-6.
  • Кубо Р. Термодинамика. — М.: Мир, 1970. — 304 с. (недоступная ссылка)
  • Лифшиц Е. М. Теплоёмкость // Физическая энциклопедия / Ред. А. М. Прохоров. — М.: Большая Советская Энциклопедия, 1992. — Т. 5. — С. 77–78.
  • Лифшиц Е. М. Теплоёмкость // Большая советская энциклопедия / Ред. А. М. Прохоров. — 3-е издание. — М.: Большая Советская Энциклопедия, 1976. — Т. 25. — С. 451.
  • Сивухин Д. В. Общий курс физики. — Издание 5-е, исправленное. — М.: Физматлит, 2006. — Т. II. Термодинамика и молекулярная физика. — 544 с. — ISBN 5-9221-0601-5.
  • Теплоемкость // Большая российская энциклопедия. — М.: Большая российская энциклопедия, 2016. — Т. 32. — С. 54.

Список обозначений в физике — Википедия

СимволЗначение и происхождение
A{\displaystyle A}Площадь (лат. area), векторный потенциал[1], работа (нем. Arbeit), амплитуда (лат. amplitudo), параметр вырождения, Работа выхода (нем. Austrittsarbeit), коэффициент Эйнштейна для спонтанного излучения, массовое число
a{\displaystyle a}Ускорение (лат. acceleratio), амплитуда (лат. amplitudo), активность (лат. activitas), коэффициент температуропроводности, вращательная способность, радиус Бора, натуральный показатель поглощения света
B{\displaystyle B}Вектор магнитной индукции[1], барионный заряд (англ. baryon number), удельная газовая постоянная, вириальний коэффициент, функция Бриллюэна (англ. Brillion function), ширина интерференционной полосы (нем. Breite), яркость, постоянная Керра, коэффициент Эйнштейна для вынужденного излучения, коэффициент Эйнштейна для поглощения, вращательная постоянная молекулы
b{\displaystyle b}Вектор магнитной индукции[1], красивый кварк (англ. beauty/bottom quark), постоянная Вина, ширина распада (нем. Breite)
C{\displaystyle C}Электрическая ёмкость (англ. capacitance), теплоёмкость (англ. heatcapacity), постоянная интегрирования (лат. constans), очарование (чарм, шарм; англ. charm), коэффициенты Клебша — Гордана (англ. Clebsch-Gordan coefficients), постоянная Коттона — Мутона (англ. Cotton-Mouton constant), кривизна (лат. curvatura)
c{\displaystyle c}Скорость света (лат. celeritas), скорость звука (лат. celeritas), Теплоёмкость (англ. heat capacity), очарованный кварк (англ. charm quark), концентрация (англ. concentration), первая радиационная постоянная, вторая радиационная постоянная, удельная теплоёмкость
D{\displaystyle D}Вектор электрической индукции[1] (англ. electric displacement field), Коэффициент диффузии (англ. diffusion coefficient), Оптическая сила (англ. dioptric power), коэффициент прохождения, тензор квадрупольного электрического момента, угловая дисперсия спектрального прибора, линейная дисперсия спектрального прибора, коэффициент прозрачности потенциального барьера, D-мезон (англ. D meson), Диаметр (лат. diametros, др.-греч. διάμετρος)
d{\displaystyle d}Расстояние (лат. distantia), Диаметр (лат. diametros, др.-греч. διάμετρος), дифференциал (лат. differentia), нижний кварк (англ. down quark), дипольный момент (англ. dipole moment), период дифракционной решётки, толщина (нем. Dicke)
E{\displaystyle E}Энергия (лат. energīa), напряжённость электрического поля[1] (англ. electric field), Электродвижущая сила (англ. electromotive force), магнитодвижущая сила, освещенность (фр. éclairement lumineux), излучательная способность тела, модуль Юнга
e{\displaystyle e}Основание натуральных логарифмов (2,71828…), электрон (англ. electron), элементарный электрический заряд (англ. elementaty electric charge), константа электромагнитного взаимодействия
F{\displaystyle F}Сила (лат. fortis), постоянная Фарадея (англ. Faraday constant), свободная энергия Гельмгольца (нем. freie Energie), атомный фактор рассеяния, тензор электромагнитного поля, магнитодвижущая сила, модуль сдвига, фокусное расстояние (англ. focal length)
f{\displaystyle f}Частота (лат. frequentia), функция (лат. functia), летучесть (нем. Flüchtigkeit), сила (лат. fortis), фокусное расстояние (англ. focal length), сила осциллятора, коэффициент трения
G{\displaystyle G}Гравитационная постоянная (англ. gravitational constant), тензор Эйнштейна, свободная энергия Гиббса (англ. Gibbs free energy), метрика пространства-времени, вириал, парциальная мольная величина, поверхностная активность адсорбата, модуль сдвига, полный импульс поля, Глюон (англ. gluon), константа Ферми, квант проводимости, электрическая проводимость, Вес (нем. Gewichtskraft)
g{\displaystyle g}Ускорение свободного падения (англ. gravitational acceleration), Глюон (англ. gluon), фактор Ланде, фактор вырождения, весовая концентрация, Гравитон (англ. graviton), метрический тензор
H{\displaystyle H}Напряжённость магнитного поля[1], эквивалентная доза, энтальпия (англ. heat contents или от греческой буквы «эта», H — ενθαλπος[2]), гамильтониан (англ. Hamiltonian), функция Ганкеля (англ. Hankel function), функция Хевисайда (англ. Heaviside step function), бозон Хиггса (англ. Higgs boson), экспозиция, полиномы Эрмита (англ. Hermite polynomials)
h{\displaystyle h}Высота (нем. Höhe), постоянная Планка (нем. Hilfsgröße[3]), спиральность (англ. helicity)
I{\displaystyle I}сила тока (фр. intensité de courant), интенсивность звука (лат. intēnsiō), интенсивность света (лат. intēnsiō), сила излучения, сила света, момент инерции, вектор намагниченности
i{\displaystyle i}Мнимая единица (лат. imaginarius), единичный вектор (координатный орт)
J{\displaystyle J}Плотность тока (также 4-вектор плотности тока), момент импульса, функция Бесселя, момент инерции, полярный момент инерции сечения, вращательное квантовое число, сила света, J/ψ-мезон
j{\displaystyle j}Мнимая единица (в электротехнике и радиоэлектронике), плотность тока (также 4-вектор плотности тока), единичный вектор (координатный орт)
K{\displaystyle K}Каона (англ. kaons), термодинамическая константа равновесия, коэффициент электронной теплопроводности металлов, модуль всестороннего сжатия, механический импульс, постоянная Джозефсона, кинетическая энергия
k{\displaystyle k}Коэффициент (нем. Koeffizient), постоянная Больцмана, теплопроводность, волновое число, единичный вектор (координатный орт)
L{\displaystyle L}Момент импульса, дальность полёта, удельная теплота парообразования и конденсации, индуктивность, функция Лагранжа (англ. Lagrangian), классическая функция Ланжевена (англ. Langevin function), число Лоренца (англ. Lorenz number), уровень звукового давления, полиномы Лагерра (англ. Laguerre polynomials), орбитальное квантовое число, энергетическая яркость, яркость (англ. luminance)
l{\displaystyle l}Длина (англ. length), длина свободного пробега (англ. length), орбитальное квантовое число, радиационная длина
M{\displaystyle M}Момент силы, масса (лат. massa, от др.-греч. μᾶζα, кусок теста), вектор намагниченности (англ. magnetization), крутящий момент, число Маха, взаимная индуктивность, магнитное квантовое число, молярная масса
m{\displaystyle m}Масса, магнитное квантовое число (англ. magnetic quantum number), магнитный момент (англ. magnetic moment), эффективная масса, дефект массы, масса Планка
N{\displaystyle N}Количество (лат. numerus), постоянная Авогадро, число Дебая, полная мощность излучения, увеличение оптического прибора, концентрация, мощность, сила нормальной реакции
n{\displaystyle n}Показатель преломления, количество вещества, нормальный вектор, единичный вектор, нейтрон (англ. neutron), количество (англ. number), основное квантовое число, частота вращения, концентрация, показатель политропы, постоянная Лошмидта
O{\displaystyle O}Начало координат (лат. origo)
P{\displaystyle P}Мощность (лат. potestas), давление (лат. pressūra), полиномы Лежандра, вес (фр. poids), сила тяжести, вероятность (лат. probabilitas), поляризуемость, вероятность перехода, импульс (также 4-импульс, обобщённый импульс; лат. petere)
p{\displaystyle p}Импульс (также 4-импульс, обобщённый импульс; лат. petere), протон (англ. proton), дипольный момент, волновой параметр, давление, число полюсов, плотность.
Q{\displaystyle Q}Электрический заряд (англ. quantity of electricity), количество теплоты (англ. quantity of heat), объёмный расход, обобщённая сила, хладопроизводительность, энергия излучения, световая энергия, добротность (англ. quality factor), нулевой инвариант Аббе, квадрупольный электрический момент (англ. quadrupole moment), энергия ядерной реакции
q{\displaystyle q}Электрический заряд, обобщённая координата, количество теплоты (англ. quantity of heat), эффективный заряд, добротность
R{\displaystyle R}Электрическое сопротивление (англ. resistance), универсальная газовая постоянная, постоянная Ридберга (англ. R ydberg constant), постоянная фон Клитцинга, коэффициент отражения, сопротивление излучения (англ. resistance), разрешение (англ. resolution), светимость, пробег частицы, расстояние
r{\displaystyle r}Радиус (лат. radius), радиус-вектор, радиальная полярная координата, удельная теплота фазового перехода, удельная рефракция (лат. rēfractiō), расстояние
S{\displaystyle S}Площадь поверхности (англ. surface area), энтропия[4], действие, спин (англ. spin), спиновое квантовое число (англ. spin quantum number), странность (англ. strangeness), главная функция Гамильтона, матрица рассеяния (англ. scattering matrix), оператор эволюции, вектор Пойнтинга
s{\displaystyle s}Перемещение (итал. spostamento), странный кварк (англ. strange quark), путь, пространственно-временной интервал (англ. spacetime interval), оптическая длина пути
T{\displaystyle T}Температура (лат. temperātūra), период (лат. tempus), кинетическая энергия, критическая температура, терм, период полураспада, критическая энергия, изоспин
t{\displaystyle t}Время (лат. tempus), истинный кварк (англ. true quark), правдивость (англ. truth), планковское время
U{\displaystyle U}Внутренняя энергия, потенциальная энергия, вектор Умова, потенциал Леннард-Джонса, потенциал Морзе, 4-скорость, электрическое напряжение
u{\displaystyle u}Верхний кварк (англ. up quark), скорость, подвижность, удельная внутренняя энергия, групповая скорость
V{\displaystyle V}Объём (фр. volume), электрическое напряжение (англ. voltage), потенциальная энергия, видность полосы интерференции, постоянная Верде (англ. Verdet constant)
v{\displaystyle v}Скорость (лат. vēlōcitās), фазовая скорость, удельный объём
W{\displaystyle W}Механическая работа (англ. work), работа выхода, W-бозон, энергия, энергия связи атомного ядра, мощность
w{\displaystyle w}Скорость, плотность энергии, коэффициент внутренней конверсии, ускорение

Таблицы удельной теплоемкости веществ: газов, жидкостей, металлов, продуктов

АБС пластик1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках840
Алмаз502
Аргиллит700…1000
Асбест волокнистый1050
Асбестоцемент1500
Асботекстолит1670
Асбошифер837
Асфальт920…2100
Асфальтобетон1680
Аэрогель (Aspen aerogels)700
Базальт850…920
Барит461
Береза1250
Бетон710…1130
Битумоперлит1130
Битумы нефтяные строительные и кровельные1680
Бумага1090…1500
Вата минеральная920
Вата стеклянная800
Вата хлопчатобумажная1675
Вата шлаковая750
Вермикулит840
Вермикулитобетон840
Винипласт1000
Войлок шерстяной1700
Воск2930
Газо- и пенобетон, газо- и пеносиликат, газо- и пенозолобетон840
Гетинакс1400
Гипс формованный сухой1050
Гипсокартон950
Глина750
Глина огнеупорная800
Глинозем700…840
Гнейс (облицовка)880
Гравий (наполнитель)850
Гравий керамзитовый840
Гравий шунгизитовый840
Гранит (облицовка)880…920
Графит708
Грунт влажный (почва)2010
Грунт лунный740
Грунт песчаный900
Грунт сухой850
Гудрон1675
Диабаз800…900
Динас737
Доломит600…1500
Дуб2300
Железобетон840
Железобетон набивной840
Зола древесная750
Известняк (облицовка)850…920
Изделия из вспученного перлита на битумном связующем1680
Ил песчаный1000…2100
Камень строительный920
Капрон2300
Карболит черный1900
Картон гофрированный1150
Картон облицовочный2300
Картон плотный1200
Картон строительный многослойный2390
Каучук натуральный1400
Кварц кристаллический836
Кварцит700…1300
Керамзит750
Керамзитобетон и керамзитопенобетон840
Кирпич динасовый905
Кирпич карборундовый700
Кирпич красный плотный840…880
Кирпич магнезитовый1055
Кирпич облицовочный880
Кирпич огнеупорный полукислый885
Кирпич силикатный750…840
Кирпич строительный800
Кирпич трепельный710
Кирпич шамотный930
Кладка «Поротон»900
Кладка бутовая из камней средней плотности880
Кладка газосиликатная880
Кладка из глиняного обыкновенного кирпича880
Кладка из керамического пустотного кирпича880
Кладка из силикатного кирпича880
Кладка из трепельного кирпича880
Кладка из шлакового кирпича880
Кокс порошкообразный1210
Корунд711
Краска масляная (эмаль)650…2000
Кремний714
Лава вулканическая840
Латунь400
Лед из тяжелой воды2220
Лед при температуре 0°С2150
Лед при температуре -100°С1170
Лед при температуре -20°С1950
Лед при температуре -60°С1700
Линолеум1470
Листы асбестоцементные плоские840
Листы гипсовые обшивочные (сухая штукатурка)840
Лузга подсолнечная1500
Магнетит586
Малахит740
Маты и полосы из стекловолокна прошивные840
Маты минераловатные прошивные и на синтетическом связующем840
Мел800…880
Миканит250
Мипора1420
Мрамор (облицовка)880
Настил палубный1100
Нафталин1300
Нейлон1600
Неопрен1700
Пакля2300
Парафин2890
Паркет дубовый1100
Паркет штучный880
Паркет щитовой880
Пемзобетон840
Пенобетон840
Пенопласт ПХВ-1 и ПВ-11260
Пенополистирол1340
Пенополистирол «Пеноплекс»1600
Пенополиуретан1470
Пеностекло или газостекло840
Пергамин1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки850
Перекрытие из железобетонных элементов со штукатуркой860
Перекрытие монолитное плоское железобетонное840
Перлитобетон840
Перлитопласт-бетон1050
Перлитофосфогелевые изделия1050
Песок для строительных работ840
Песок речной мелкий700…840
Песок речной мелкий (влажный)2090
Песок сахарный1260
Песок сухой800
Пихта2700
Пластмасса полиэфирная1000…2300
Плита пробковая1850
Плиты алебастровые750
Плиты древесно-волокнистые и древесно-стружечные (ДСП, ДВП)2300
Плиты из гипса840
Плиты из резольноформальдегидного пенопласта1680
Плиты из стеклянного штапельного волокна на синтетическом связующем840
Плиты камышитовые2300
Плиты льнокостричные изоляционные2300
Плиты минераловатные повышенной жесткости840
Плиты минераловатные полужесткие на крахмальном связующем840
Плиты торфяные теплоизоляционные2300
Плиты фибролитовые и арболит на портландцементе2300
Покрытие ковровое1100
Пол гипсовый бесшовный800
Поливинилхлорид (ПВХ)920…1200
Поликарбонат (дифлон)1100…1120
Полиметилметакрилат1200…1650
Полипропилен1930
Полистирол УПП1, ППС900
Полистиролбетон1060
Полихлорвинил1130…1200
Полихлортрифторэтилен920
Полиэтилен высокой плотности1900…2300
Полиэтилен низкой плотности1700
Портландцемент1130
Пробка2050
Пробка гранулированная1800
Раствор гипсовый затирочный900
Раствор гипсоперлитовый840
Раствор гипсоперлитовый поризованный840
Раствор известково-песчаный840
Раствор известковый920
Раствор сложный (песок, известь, цемент)840
Раствор цементно-перлитовый840
Раствор цементно-песчаный840
Раствор цементно-шлаковый840
Резина мягкая1380
Резина пористая2050
Резина твердая обыкновенная1350…1400
Рубероид1500…1680
Сера715
Сланец700…1600
Слюда880
Смола эпоксидная800…1100
Снег лежалый при 0°С2100
Снег свежевыпавший2090
Сосна и ель2300
Сосна смолистая 15% влажности2700
Стекло зеркальное (зеркало)780
Стекло кварцевое890
Стекло лабораторное840
Стекло обыкновенное, оконное670
Стекло флинт490
Стекловата800
Стекловолокно840
Стеклопластик800
Стружка деревянная прессованая1080
Текстолит1470…1510
Толь1680
Торф1880
Торфоплиты2100
Туф (облицовка)750…880
Туфобетон840
Уголь древесный960
Уголь каменный1310
Фанера клееная2300…2500
Фарфор750…1090
Фибролит (серый)1670
Циркон670
Шамот825
Шифер750
Шлак гранулированный750
Шлак котельный700…750
Шлакобетон800
Шлакопемзобетон (термозитобетон)840
Шлакопемзопено- и шлакопемзогазобетон840
Штукатурка гипсовая840
Штукатурка из полистирольного раствора1200
Штукатурка известковая950
Штукатурка известковая с каменной пылью920
Штукатурка перлитовая1130
Штукатурка фасадная с полимерными добавками880
Шунгизитобетон840
Щебень и песок из перлита вспученного840
Щебень из доменного шлака, шлаковой пемзы и аглопорита840
Эбонит1430
Эковата2300
Этрол1500…1800

Отправить ответ

avatar
  Подписаться  
Уведомление о