Технология анодирование алюминия: Процесс анодирования алюминия – Анодирование алюминия в домашних условиях (черное): технология

Содержание

Анодирование — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 ноября 2014; проверки требуют 15 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 ноября 2014; проверки требуют 15 правок.

Анодирование (синонимы: анодное оксидирование, анодное окисление) — процесс создания оксидной плёнки на поверхности некоторых металлов и сплавов путём их анодной поляризации в проводящей среде. Существуют различные виды анодирования, в том числе электрохимическое анодирование — процесс получения оксидного покрытия на поверхности различных металлов (Al, Mg, Ti, Ta, Zr, Hf и др.) и сплавов (алюминиевых, магниевых, титановых) в среде электролита, водного или неводного.

Например, при анодировании алюминиевых сплавов деталь погружают в кислый электролит (водный раствор H2SO4) и соединяют с положительным полюсом источника тока. Однако, сильно упрощённые представления о том, что выделяющийся при этом кислород взаимодействует с алюминием, образуя на его поверхности оксидную плёнку – мало соответствуют реальному механизму электрохимического анодирования.

Созданные в результате анодирования анодные оксидные плёнки (АОП) могут иметь различное назначение, например, представлять собой защитные, декоративные покрытия. АОП служат также диэлектриком в оксидных (электролитических) конденсаторах.

Электрохимическое анодирование

Наибольшее распространение для анодирования алюминиевых деталей получил сернокислый процесс.

Алюминиевую деталь и свинцовый катод помещают в охлаждаемую ванну с раствором серной кислоты (плотность 1 200—1 300 г/л). Процесс протекает при плотностях тока 10-50 мА/см² детали (требуемое напряжение источника до 50—100 В). Температура электролита ключевым образом влияет на качество и естественный цвет оксидной плёнки и поддерживается в диапазоне -20 до +20 °C.

Оксидная плёнка при повышенных температурах бесцветная, тонкая и рыхлая, что позволяет окрашивать её практически любыми красителями. Пониженные температуры позволяют получить толстые плотные оксидные плёнки с естественной окраской (как правило золотистых оттенков).

При получении описанным способом анодный оксид получается пористым, поэтому после анодирования часто применяют дополнительные методы обработки с целью закупорить поры. Обычно деталь длительно обрабатывают паром или кипятят в воде.

Качественно анодированные детали считаются хорошими изоляторами для напряжений до 100 В, при условии целостности оксидной плёнки которая относительно нестойкая по отношению к грубым механическим воздействиям, к примеру она может быть легко поцарапана острым металлическим предметом.

  • Шрейдер А. В. Оксидирование алюминия и его сплавов. — М.: Металлургиздат, 1960. — 198 с.
  • Голубев А. И. Анодное окисление алюминиевых сплавов. — М.: Изд-во АН СССР, 1961. — 221 с.
  • Юнг Л. Анодные оксидные пленки. — Л.: Энергия, 1967. — 232 с.
  • Томашов Н. Д., Тюкина М. Н., Заливалов Ф. П. Толстослойное анодирование алюминия и его сплавов. — М.: Машиностроение, 1968. — 156 с.
  • Беленький М. А., Иванов А. Ф. Электрооосаждение металлических покрытий, справочник. — М.: Металлургия, 1985.
  • Хенли В. Ф. Анодное оксидирование алюминия и его сплавов. — М.: Металлургия, 1986. — 152 с.
  • Аверьянов Е. Е. Справочник по анодированию. — Москва: Машиностроение, 1988. — 224 с. — ISBN 5-217-00273-5.
  • Гордиенко П. С., Руднев В. С. Электрохимическое формирование покрытий на алюминии и его сплавах при потенциалах искрения и пробоя. — Владивосток: Дальнаука, 1999. — 233 с. — ISBN 5-7442-0922-0.
  • Артур В. Браке. Технологии Анодирования Алюминия. — М.: Interall, 2000.
  • Лыньков Л. М., Мухуров Н. И. Микроструктуры на основе анодной алюмооксидной технологии. — Минск: Бестпринт, 2002. — 216 с. — ISBN 985-6633-50-8.
  • Мухуров Н. И. Алюмооксидные микро-наноструктуры для микроэлектромехнических систем. — Минск: Бестпринт, 2004. — 166 с. — ISBN 985-6633-50-8.
  • Позняк А. А. Модифицированный анодный оксид алюминия и композитные материалы на его основе. — Минск: Издательский центр БГУ, 2007. — 251 с. — ISBN 978-985-476-561-7.
  • Аверьянов Е. Е. Плазменное анодирование в радиоэлектронике. — М.: Радио и связь, 1983. — 79 с.

Анодирование алюминия — процесс и технологии

Абсолютно каждый металл подвержен коррозии. Металлические изделия без надлежащей защиты от коррозии в скором времени портятся, приходят в негодность и требуют замены. Одним из способов защиты металлов от воздействия агрессивной среды является создание на его поверхности плотной и толстой оксидной пленки. Такая пленка образуется в процессе анодирования.

Анодированием называется процесс формирования оксидной пленки на поверхности металлов и их сплавов путем их анодной поляризации в проводящей среде. Целью анодирования является укрепление различных металлов, в том числе и алюминия. Однако стоит отметить, что анодирование алюминия используется не только с целью укрепления метала, оно также позволяет сгладить разнообразные неровности поверхности (например, сколы, царапины, вмятины и др.), повышает адгезивные качества металла (лакокрасочное покрытие существенно лучше ложится на оксидную пленку, чем на голый металл), улучшает внешний вид металла, а также придает ему разнообразные декоративные эффекты (например, имитация золота, серебра, жемчуга и т.д.).

Процесс анодирования состоит из трех частей:

  • подготовительный этап;
  • химическая обработка;
  • закрепление.

Подготовительный этап предполагает механическую и электрохимическую обработку алюминия. Механическая обработка включает очистку металла, шлифование и обезжиривание. После этого изделие помещается в щелочной раствор для травления, после чего оно перекладывается в кислотный для осветления. На завершающей стадии подготовительного этапа осуществляется промывка поверхности изделия. При этом стоит отметить, что промывка производится обязательно несколько раз с целью полной очистки алюминия от кислотных веществ.

Во время химической обработки алюминия осуществляется обработка металла в электролите. В качестве электролитов могут быть использованы растворы разнообразных кислот (серная, хромовая, щавелевая, сульфосалициловая). Иногда в растворы может добавляться соль или органическая кислота. Самым распространенным электролитом выступает именно серная кислота. Стоит обратить внимание на то, что этот электролит используется только в случае обработки изделий простой формы. Для изделий, имеющих более сложную форму с небольшими отверстиями или зазорами, применяется чаще хромовая кислота.

То, насколько качественным в итоге получится анодированный алюминий, зависит от многих факторов, среди которых в обязательном порядке присутствуют концентрация, температурный режим, а также плотность тока. При воздействии высоких температур анодирование буде протекать существенно быстрее. Кроме этого, высокие температуры способствуют образованию мягкой и высокопористой пленки на поверхности изделия. В случае необходимости получения более твердого и прочного покрытия, анодирование проводится при более низких температурах. Таким образом, допустимые температурные режимы для анодирования находятся в диапазоне от 0

0С до +500С. Плотность тока при этом может находиться в пределах от 1 до 3 Ампер.

На последнем, закрепительном, этапе осуществляется закрытие пор, которые образовались на поверхности изделия во время анодирования. Закрытие пор осуществляется для того, чтобы поверхность приобрела достаточную прочность. Закрепление может осуществляться тремя способами:

  • путем погружения изделия в горячую пресную воду;
  • обработкой паром;
  • размещением металла в так называемом «холодном растворе».

Стоит сказать, что если в дальнейшем будет производиться окрашивание поверхности, то данный этап не нужен, поскольку лакокрасочный материал заполнит имеющиеся поры естественным образом.

Кроме описанного выше способа, существуют также и другие способы анодирования. К ним можно отнести следующие:

  • твердое;
  • микродуговое;
  • цветное.

В результате твердого анодирования на поверхности алюминия образуется прочная микропленка. Данная методика достаточно широко применяется в авиастроении, автомобилестроении, а также в строительстве. Суть данной технологии заключается в применении не одного конкретного, а сразу нескольких электролитов. Например, в одном процессе могут использоваться щавелевая, серная, лимонная, винная, а также борная кислота. Во время анодирования происходит плавное увеличение плотности тока, что приводит к изменениям в ячейках. Это, в свою очередь, способствует приобретению пленкой повышенной прочности.

Применение анодированного алюминия в зависимости от толщины оксидного слоя

Класс

Толщина оксидного слоя

Сфера применения

5

Миним. 5 микрон

Для внутреннего использования, без частой чистки (мытья)

10

Миним. 10 микрон

Для наружного применения в обычных атмосферных условиях, с периодическим техническим обслуживанием (чистка)

15

Миним. 15 микрон

Для наружного применения в атмосферных условиях промышленных зон и морских побережий

20

Миним. 20 микрон

Для наружного применения в атмосферных условиях промышленных зон и морских побережий (упрочненный слой)

25

Миним. 25 микрон

Для наружного применения в атмосферных условиях промышленных зон и морских побережий (упрочненный слой) по специальным запросам некоторых рынков

Микродуговым анодированием называется электрохимический процесс, при котором происходит окисление поверхности алюминия, при одновременном возникновении электрозарядных явлений между анодом и электролитом. В результате данной методики образуется покрытие, отличающееся достаточным качеством, а также которое имеет высокий уровень износостойкости и адгезии.

Цветное анодирование алюминия. Основной задачей данного метода является изменить цвет алюминиевой детали. Цветное анодирование можно осуществить четырьмя способами:

  • окрашиванием методом адсорбции. Происходит путем погружения изделия в электролитную ванну. Кроме этого осуществление данного способа возможно путем погружения деталей в раствор с красящим веществом, которое предварительно разогретое до необходимой температуры;
  • электролитическое окрашивание. Данный способ имеет еще одно название – черное анодирование. Осуществляется в два этапа. Первый предполагает получение бесцветной пленки, после чего металл погружается в кислый солевой раствор, в результате – метал приобретает различный цвет, который может разниться от черного до слабого бронзового оттенка. Именно черные тона алюминия очень популярны в строительной области;
  • интерференционное окрашивание. Технология получения определенного цвета данным способом напоминает электролитическое окрашивание. Однако, при данном методе создается особый светоотражающий слой, придающий более разнообразные оттенки металлу;
  • интегральное окрашивание. Данная технология заключается в смешивании электролита с органическими солями.

Декоративный анодированный алюминий применяется во многих сферах. Так, он используется при изготовлении литых, прессованных и штампованных алюминиевых изделий. Очень часто такой алюминий используется при создании декоративных мебельных деталей, также из него могут изготавливаться спортивный инвентарь, поручни и многое другое. Основным преимуществом использования декоративного анодированного алюминия в быту является то, что он не оставляет неприятных пятен серого цвета на одежде и теле человека.

Анодирование алюминия в домашних условиях

Этот процесс достаточно простой для самостоятельного проведения. Однако, следует соблюдать некоторые правила, чтобы процесс был безопасным и дал желаемый результат. В первую очередь, следует проводить анодирование в хорошо проветриваемом помещении, а лучше на открытом воздухе – улице или балконе. Это связано с тем, что при анодировании происходит выделение на аноде кислорода, а на катоде – водорода, в результате смешивания которых образуется гремучий газ, являющийся тем же динамитом. Поэтому, в помещении можно погибнуть от даже самой маленькой искры.

Стоит помнить, что работать придется с кислотой, которая является очень едким веществом. Даже не смотря на то, что она находится в достаточно сильно разбавленном виде и при попадании на кожу вызовет не более, чем зуд, все таки, следует обращаться с ней крайне осторожно, ведь при попадании кислоты в глаза или на другие слизистые оболочки можно получить серьезные травмы, требующие госпитализации. Поэтому, в целях своей личной безопасности следует пользоваться защитными очками, а также иметь поблизости ведро с слабым содовым раствором.

Перед тем, как начать проводить анодирование алюминия в домашних условиях, следует провести подготовительные работы, которые предполагают полировку изделия до зеркального блеска (желательно, на полировочном кругу). Это действие необходимо для того, чтобы удалить нежелательные дефекты, которые не замаскируются после анодирования, а также чтобы снизить вероятность «прогара» во время самого процесса.

Также подготовительный этап предполагает обезжиривание изделия с помощью стирального порошка, хозяйственного мыла и зубной щетки. Не следует в данном процессе использовать едкий натрий или калий, которые рекомендуются в заводских технологиях, так как при этом заметно портится чистота поверхности. После промывки следует детали высушить горячим воздухом.

За подготовительным этапом следует изготовление электролита. При осуществлении анодирования в домашних условиях используется в качестве электролита раствор в дистиллированной воде серной кислоты. При этом можно применять обычную воду из-под крана. Однако, если есть возможность, то лучше приобрести дистиллированную воду.

Приобрести все необходимые ингредиенты достаточно просто – нужно всего лишь зайти в любой автомагазин, где всегда есть и дистиллированная вода, и серная кислота. Однако, кислота продается под названием «Электролит для свинцового аккумулятора», и имеет разбавленный вид в пропорции 1,27 грамм на 1 см кубический. Приобрев данный электролит, следует осуществить его смешивание с водой в пропорции 1:1. Таким образом, взяв обычную канистру, наполненную электролитом, объемом в 5 литров, после смешивания на выходе получится 10 литров раствора для анодирования. Мелкие детали вполне с легкостью можно анодировать в данном количестве раствора, а вот для более крупных деталей придется данное количество удвоить.

Стоит помнить о том, что во время смешивания воды и кислоты происходит сильная химическая реакция, в результате которой выделяется огромное количество тепла, поэтому, при неаккуратном смешивании этих двух компонентов можно получить травму в виде брызг в лицо. Именно в связи с этим следует использовать защитную экипировку, а также вливать электролит в воду тонкой и аккуратной струйкой. При этом следует непрерывно помешивать раствор стеклянной палочкой.

Также необходимо подготовить и соответствующее оборудование. Понадобится несколько емкостей – для мелких деталей, недлинных и длинных. Емкости обязательно должны быть алюминиевыми.

Также ванна должно иметь хорошую теплоизоляцию корпуса, или же электролит будет слишком быстро нагреваться в ней, что привет к необходимости в его частой замене. Наиболее простым решением в вопросе теплоизоляции ванны является ее оклеивание слоем пенопласта толщиной 2-4 см. Также подойдет вариант поместить ванну в коробку и пространство между ванной и коробкой задуть строительной пеной.

После этого необходимо изготовить для ванны свинцовый катод. Для этого подойдет обычный листовой свинец, который можно снять с толстых электрокабелей. Площадь катода должна вдвое превышать площадь поверхности обрабатываемого изделия. Обязательно в катодной пластине необходимо проделать отверстия для того, чтобы осуществлялся выход газа.

Следующим этапом является сам режим обработки. В процессе анодирования оптимальной температурой является -10 — +10 0С. Если температуру увеличить за +100, то в результате получится очень тонкий, нетвердый и бесцветный защитный слой. Не смотря на то, что допустимой является температура +10, все таки, рекомендуется прекращать анодирование уже при +50С. При анодировании следует беспрерывно перемешивать электролит, чтобы выровнять температуру на поверхности изделия из алюминия. В противном случае на детали появятся участки местного перегрева, которые в дальнейшем станут причиной появления пробоев и растрава детали.

При анодировании следует удерживать плотность тока на уровне 1,6 – 4 Ампер на дм2. Именно благодаря правильно созданным условиям на поверхности изделия образуется красивый, окрашенный и плотный защитный анодный слой. В свою очередь, катодная плотность должна быть низкой.

После проведения всех подготовительных процессов можно начинать сам процесс анодирования. Для этого необходимо в ванну залить электролит. При этом на выходе имеется блок питания с током. Чтобы иметь возможность регулировать силу тока, к цепи при анодировании алюминия следует подключить проволочных переменный резистор. В емкости присутствуют два предмета – это свинцовый катод в виде пластины и анод, т.е. обрабатываемое изделие. Во время подачи на них тока выделяется кислород и растет анодный защитный слой.

Про качественный электрический контакт между свинцом и деталью будут свидетельствовать медленно поднимающиеся по всей поверхности изделия микропузырьки. Продолжительность процесса анодирования необходимо контролировать по окрасу изделия. Как правило, мелкие детали окрашиваются быстрее. При этом, поверхность должна быть гладкой, блестящей и светло-серой.

После приобретения деталью необходимого оттенка, а также рыхлого защитного слоя, следует произвести фиксацию этого слоя. Это необходимо, так как покрытие на микроуровне имеет пористую структуру, которая не может препятствовать воздуху и воде. Такой слой является отличной защитой металла от механических повреждений, однако не защищает от химического воздействия.

Показатель

Анодированный алюминий

Нержавеющая сталь

Стойкость к коррозии

Отлично

Отлично

Стойкость к загрязнению

Отлично,не сохраняет на себе загрязнения или отпечатки пальцев

Удовлетворительно, в целом, сохраняет на себе отпечатки пальцев и загрязнения, нуждается в регулярной чистке

Вес

Легкий

В три раза тяжелее алюминия

Стойкость к механическим повреждениям

Отлично, при правильном обращении

Отлично

Вторичная переработка

Отлично, без потери качественных характеристик

Ограничена

 

Показатель

Анодированный алюминий

Окрашенный алюминий

Стойкость к коррозии

Отлично,качественные характеристики сохраняются длительное время: возможность  точечной коррозии 

Возможность нитевидной коррозии при неправильной предварительной обработке

Качество основы металла

Всегда высокое

Переменное

Долговечность поверхности

Отлично

Варьируется в зависимости от типа покрытия

Экологичность

100% вторично перерабатываемый

Не полностью перерабатываемый

Стойкость к истиранию

Отлично

Варьируется в зависимости от типа покрытия

Цветовая гамма

Ограниченная (для наружного применения)

Широкая

Металлический эффект поверхности

Отлично,как на ощупь так и визуально

Только для некоторых типов отделки

Стоимость

Конкурентная цена

Цена всегда выше, чем  на анодированный алюминий. Варьируется в зависимости от качества основы металла, качества типа покрытия.

Что такое анодирование алюминия: назначение, технология

В настоящее время алюминий широко используется в различных целях благодаря своим характеристикам. Он очень легко поддается обработке, и при высокой прочности имеет сравнительно небольшой вес. Но у него есть существенный минус – легкое окисление, из-за чего металл теряет свою внешнюю привлекательность. Для избавления от этого недостатка используется технология анодирования.

Прежде чем разобраться в технологии, нужно разобраться, что такое анодированный алюминий. Во время процесса анодирования или же анодного оксидирования происходит появление оксидной пленки на поверхности образца за счет химического взаимодействия. При анодировании участок, подвергшийся окислению, не разрушается, а становится прочнее. За счет этого процесс похож на воронение.

1

Предназначение анодирования

Кислород является сильным природным окислителем, поэтому множество металлов реагирует с ним, образуя соответствующие оксиды. Но пленка природных оксидов зачастую очень тонкая и совсем не защищает металл. Благодаря анодировке эта пленка упрочняется, что позволяет защитить металл от разнообразных агрессивных воздействий внешней среды. Кроме этого, анодированный образец становится гораздо красивее, без дефектов поверхности, и его становится легче обрабатывать, например, красить.

Анодированный алюминий используется во многих областях промышленности, например, для изготовления лестниц, поручней, высокопрочной фурнитуры. Обработанный металл не оставляет следов на руках. Его используют для изготовления отражателей света, например, в прожекторах, а также для нагревательных рефлекторов.

Теплое анодирование

Одним из наиболее простых в исполнении процессов считается теплое анодное окисление. С его помощью можно окрасить поверхность металла. Но при простоте исполнения, у такой технологии есть существенный недостаток – получаемый алюминиевый профиль достаточно хрупок и может подвергаться коррозии. Более того, при ошибках в работе полученное покрытие может легко стираться даже при проведении по образцу рукой. Поэтому теплое анодирование чаще всего используют как основу для дальнейших манипуляций, например, покрытие этого профиля прочной эпоксидной краской.

Холодное анодирование

За счет высокой эффективности данный процесс стал очень популярным для выполнения в домашних условиях. Суть метода заключается в том, что слой со стороны металла увеличивается за счет растворения с внешней стороны. Отличительной чертой данной технологии является необходимость поддержания низкой температуры. Также есть недостаток – это отсутствие возможности использования органических красителей.

В целом процесс состоит из следующих этапов:

  • подготовка и закрепление детали;
  • анодирование;
  • промывка;
  • закрепление слоя посредством обработки.

2

Технология анодирования

На первом этапе необходимо приготовить алюминиевые ванные. Они могут быть пластиковые, но тогда изнутри ее нужно покрыть алюминиевой фольгой. Должна быть теплоизоляция во избежание нагрева реакционной смеси. Затем необходимо изготовить катод из свинцовых листов. Важно помнить, что площадь полученного катода должна быть в два раза больше, чем площадь поверхности обрабатываемой детали. На фото изображена алюминиевая ванная.

Подготовительный процесс

Прежде чем приступать к анодировке алюминия, необходимо тщательно очистить образец. На нем не должно быть никаких загрязнений. Поверхность обезжиривают и удаляют предыдущий слой металлического оксида, так как его наличие способно помешать равномерному образованию нового покрытия. После удаления всех загрязнений и шлифовки образец окунают в щелочной раствор для того, чтоб на поверхности образовались микропоры, которые увеличили бы плотность поверхности. Эта процедура похожа на травление.

Химическая обработка

В ванную помещают электролит, в качестве которого могут быть растворы как неорганических кислот, например, серной и хромовой, так и органических – щавелевой и сульфосалициловой. Чаще всего используют хромовую кислоту или щавелевую, особенно если необходимо получить окрашенное покрытие. Данные электролиты используются в производственных, хорошо оборудованных помещениях.

В домашних условиях для обеспечения безопасности в качестве электролитов используют содовые растворы.

От состояния электролита напрямую зависит качество анодирования, из-за чего следует внимательно отнестись к его выбору и подготовке.

3

Закрепление

После процедуры анодного окисления на образце появляются поры различного диаметра, которые необходимо закрыть, чтобы добиться прочности. Для этого необходимо или опустить деталь в горячую пресную воду, обработать паром или поместить его в «холодный раствор».

Но если же изделие после анодировки было покрыто краской, то закреплять не нужно, так как краска закроет образовавшиеся поры.

Типичные ошибки при анодировании

Если не соблюдать все правила анодирования, то полученное покрытие не будет прочным к воздействию извне и держать краску. Кроме этого, необходимо соблюдать технику безопасности. Обязательно наличие защитной одежды, перчаток и очков.

Температура электролита

От температуры электролита зависит то, какой получится окраска детали. Если температура будет слишком низкой, то сопротивление электролита будет слишком высоким и для поддержания плотности тока трудно будет установить необходимое напряжение. Но устанавливать напряжение порядка 100 Вольт небезопасно в домашних условиях, поэтому лучше всего будет поддерживать правильную температуру – около -10°С. Если температура будет слишком высокой, то покрытие будет слабо держаться, и окрашивание будет мутного оттенка.

Анодная плотность

Процесс образования анодного покрытия идет довольно медленно. Если плотность будет слишком низкая, то слой будет хоть и относительно прочным, но мутно-белого цвета.

Оптимальной плотностью является 2-2,2 А на квадратный дециметр. Это обеспечит страховку в случае возможных ошибок. Не стоит увеличивать ток, так как на образце могут возникнуть дефекты. Увеличивать плотность тока можно только в случае, если электролит хорошо перемешивается и существует хороший отвод тепла от детали.

Катодная плотность

Катодную плотность тоже необходимо поддерживать в необходимых пределах, иначе деталь может повредиться, особенно если она больших размеров. Если размер катода будет слишком мал, то силовые линии тока будут распределяться неравномерно, и именно поэтому на детали могут появляться различные дефекты и пробоины. Поэтому используются катоды по размеру в два раза больше, чем поверхностная площадь образца.

Контакт детали с подвеской

Для достижения нужной силы тока деталь должна хорошо контактировать с подвеской. Иногда рекомендуется обматывать образец проволокой, но это ненадежно. Хороший зажим должен состоять из алюминиевой резьбовой контактной шпильки, это позволит тщательно прижать электрод к детали.

4

Анодирование алюминия и его виды

Помимо вышеперечисленных способов анодирования, применяются и другие виды: твердое, микродуговое и цветное.

В процессе твердого анодного окисления используют смесь нескольких электролитов, например, кислот. Данный процесс часто применяется для изготовления микропленок в промышленности, например, в машиностроении, изготовлении приборов и т.д, где высокая прочность изделия является необходимым требованием.

При микродуговом оксидировании происходит не только окисление поверхности металла, но и ряд других электрических процессов, за счет чего покрытия получаются очень качественные и с высокой способностью к адгезии.

Задача цветного анодирования очень проста – изменить цвет детали. Для этого применяют разнообразные методы:

  • Метод адсорбции, во время которого деталь погружается в ванную с электролитом.
  • Интегральное окрашивание. Во время этого процесса используется смесь электролита и органических солей.
  • Интерференционное окрашивание. В этом методе создается специальный светоотражающий слой, что приводит к большему разнообразию цветовой гаммы.
  • Электролитическое окрашивание (черное анодирование). Состоит из двух этапов – получения пленки, а затем ее погружение в кислый солевой раствор. Окраска полученного изделия в этом методе варьируется от черного до бронзового, поэтому такой вид окрашивания используется в различных областях строительства.

Анодирование алюминия: основные параметры

Основные параметры сернокислого анодирования

К основными параметрами сернокислого анодирования алюминия и алюминиевых сплавов относятся:

  • концентрация серной кислоты в анодном электролите;
  • температура анодного раствора – раствора серной кислоты;
  • плотность тока, поступающего через электролит на поверхность алюминиевого профиля.

Как влияют эти параметры на:

  • рост толщины анодного покрытия,
  • размеры пор,
  • внешний вид анодированной поверхности?

Как влияет на качество анодирования химический состав алюминия и алюминиевых сплавов?

Как устроено анодное покрытие

Барьерный слой

Любое анодно-окисное покрытие (далее – анодное покрытие) состоит из двух слоев – относительно толстого пористого слоя и тонкого плотного слоя, который называют барьерным (рисунок 1). Толщина этого барьерного слоя зависит от состава электролита и технологических параметров. При анодировании барьерный слой образуется первым, и его толщина прямо зависит от величины напряжения анодирования.

Рисунок 1

Пористый слой

После того как барьерный слой сформирован, на его наружной стороне, если электролит обладает достаточной растворяющей способностью, начинает формироваться пористая кристаллическая структура. Механизм роста пор до сих пор является предметом дискуссий, однако, по мнению большинства ученых ее образование происходит за счет следующей причинно-следственной цепочки: локальное растворение барьерного слоя – повышение величины тока – увеличение температуры – повышение скорости растворения. Это взаимодействие влияний и приводит к образованию пор.

Окрашивание анодированного алюминия

Для получения цветного анодного покрытия применяют в основном два метода (рисунок 2):

  • адсорбцию – пропитку пористого слоя красителями;
  • электролитическое окрашивание – электрохимическое осаждение в поры различных металлов (олова, меди, марганца и др.).

Намного реже применяют так называемое интегральное окрашивание, которое обеспечивается специальным легированием алюминиевых сплавов. Окрашивание  происходит за счет выпадения частиц в объеме пористого слоя, а не в порах.

Кроме того, в ограниченных объемах применяют так называемое интерференционное окрашивание: вариант электролитического окрашивания, который требует дополнительной ванны для расширения пор вблизи их дна.

Рисунок 2 – Методы цветного анодирования алюминия

Почему шестигранник?

В ходе своего роста анодные ячейки, включающие сами поры и окружающий ее оксид алюминия, образуют шестигранную структуру, которая, по-видимому, обеспечивает выполнение какого-то принципа минимальности энергии. Шестигранная форма анодных ячеек не зависит от типа электролита. Это явно указывает на то, что эта форма имеет чисто энергетическое происхождение.

Технология сернокислого анодирования алюминия

Стандартное анодирование

Сернокислое анодирование алюминия и алюминиевых сплавов является наиболее распространенным. Иногда его называют стандартным.

  • Концентрация серной кислоты в электролите составляет от 10 до 20 % по объему в зависимости от требований к покрытиям.
  • Плотность тока составляет обычно от 1 до 2 А/дм2 при напряжении от 12 до 20 вольт, температуре от 18 до 25 °С и длительности анодировании до 60 минут.

Скорость роста пор

На большинстве алюминиевых сплавов этот электролит дает бесцветное прозрачное анодное покрытие. При сернокислом анодировании скорость роста пор является постоянной при постоянной плотности тока. При плотности тока 1,3 А/дм2 эта скорость составляет величину 0,4 мкм/мин. Поскольку толщина барьерного слоя остается постоянной, то это значит, что с такой же скоростью растворяется и дно поры.

Размеры анодной ячейки

Размеры анодных ячеек прямо зависят от параметров анодирования (таблица 1). С увеличением напряжения размеры анодной ячейки увеличиваются, а количество пор соответственно уменьшается. Соотношение между размером ячеек и напряжением приблизительно линейное, то есть чем больше напряжение, тем больше размеры ячейки.

Таблица 1

Толщина анодного покрытия 

Рост анодного покрытия

Толщина анодного покрытия увеличивается с увеличением длительности анодирования. Однако степень роста толщины зависит от нескольких факторов, таких как тип электролита, плотность тока, длительность обработки и т.д. Вначале происходит быстрое и постоянное увеличение фактической толщины, а затем начинается уменьшение скорости роста толщины, пока не наступит стадия, при которой толщина остается приблизительно постоянной, не смотря на продолжающуюся подачу электрического тока. Это связано с тем, что в ходе анодирования происходит как непрерывный рост толщины покрытия, так и его растворение  под воздействием электролита (раствора серной кислоты).

Закон Фарадея

Фактическая толщина вычисляется как теоретическая толщина покрытия минус растворенная толщина оксида алюминия (рисунок 3). Теоретическая толщина является пропорциональной времени анодирования при постоянной плотности тока и определяется законом Фарадея, который говорит, что количество образовавшегося оксида пропорционально электрическому заряду, который прошел через анод. 

                                               Рисунок 3

Влияние химического состава алюминиевого сплава

Примеси

В принципе чистый алюминий анодируется лучше, чем его сплавы. Внешний вид анодного покрытия и его свойства (износостойкость, коррозионная стойкость  и т.п.) зависят как от типа алюминиевого сплава, так и его так сказать металлургической биографии. Размер, форма и распределение интерметаллидных частиц также влияют на качество анодирования алюминиевого сплава. Химический состав алюминиевого сплава является весьма важным в некоторых изделиях, которые требуют блестящего анодирования, для получения которых необходимо, чтобы уровень нерастворимых частиц был как можно ниже.

Анодное покрытие на алюминии Al 99,99 будет чистым и прозрачным, а при уровне содержания железа 0,08 % оно уже не такое чистое и становится все более «облачным» с увеличением толщины покрытия. При уровне нерастворимых частиц как у алюминия 1050 (алюминий марки АД0) покрытие становиться совершенно «облачным» по сравнению с более чистым металлом. Из всех алюминиевых сплавов на сплавах серий 5ххх и 6ххх получаются самые лучшие декоративные и защитные покрытия. Некоторые сплавы серии 7ххх также дают чистые покрытия с хорошими функциональными свойствами. Цветные покрытия алюминиевых сплавов серии 2ххх обычно получаются низкого качества.

Интерметаллические частицы

Поведение интерметаллидных частиц при анодировании зависит от типа частиц и анодного раствора. Некоторые интерметаллидные соединения окисляются или растворяются быстрее, чем алюминий (например, частицы β-Al-Mg), что приводит к образованию пористой структуры. Другие интерметаллидные частицы, такие как частицы кремния, являются практически нерастворимыми при анодировании и поэтому выпадают в виде включений по толщине анодного покрытия. Промежуточными между двумя этими крайними случаями являются соединения (FeAl3, α-Al-Fe-Si и т.д.), которые частично растворяются, а частично остаются в покрытии, что отрицательно влияет на качество покрытия, особенно цветного.

Влияние температуры анодирования

Влияние повышения температуры электролита пропорционально увеличению скорости растворения анодного покрытия, что в результате дает более тонкое, более пористое и более мягкое покрытие (рисунок 4).

Рисунок 4 

Для получения так называемых твердых анодных покрытий применяют низкую температуру (от 0 до 10 °С) в комбинации с высокой плотностью тока (от 2 до 3,6 А/дм2) и очень активным перемешиванием электролита. В декоративном и защитном анодировании алюминия и алюминиевых сплавов обычно применяется температура электролита от 15 до 25 ºС. Если температура поднимается выше, то максимально возможная толщина анодного слоя снижается до более низких величин из-за более высокой растворяющей способности электролита.

Влияние плотности тока анодирования

Интервал плотности тока стандартного сернокислого анодирования алюминия  составляет от 1 до 2 А/дм2, в специальных случаях – 3 А/дм2. При плотности тока ниже этого интервала, получается мягкое, пористое и тонкое покрытие. С увеличением плотности тока покрытие формируется быстрее при относительно меньшем растворении его электролитом и соответственно с более твердым и менее пористым покрытием. При очень высокой плотности тока появляется тенденция к так называемым «прижогам» – возникновению чрезмерно высокого тока в локальных областях с их перегревом (рисунок 5).

 

Рисунок 5

Когда от анодного покрытия требуется хорошее и четкое отражение света, то применяют специальные условия анодирования с низкой плотностью тока около 1 А/дм2.

Влияние концентрации серной кислоты

Влияние увеличения концентрации серной кислоты на характеристики анодного покрытия на алюминиевых сплавах аналогичны влиянию повышения температуры, хотя влияние температуры является более сильным, чем влияние концентрации. Увеличение концентрации ограничивает максимальную толщину покрытия из-за более высокой растворяющей способности более концентрированного раствора (рисунок 6).

Рисунок 6

Источник: TALAT 5203

См. Применение анодированного алюминия

Алюминий анодированный

Применение алюминиевых профилей для декоративной отделки фасадов и внутренних интерьеров используется более полувека. Красивый, пластичный и очень легкий металл во влажной атмосфере достаточно быстро покрывался серым налетом окислов. Сохранить серебристый блеск и выразительность металлического декора оказалось возможным только с помощью нанесения специального покрытия. Внешний вид анодированного алюминия практически не изменился, краски стали ярче, а о коррозии можно было забыть раз и навсегда.

Как работает анодирование

Чтобы понять, что это — анодированный алюминий, нужно чуть подробнее остановиться на том, как образуется защитная пленка. Большинство металлов защищают либо протекторами, либо изоляторами из сплавов и соединений, более стойких к кислороду и влаге. Анодированный защитный слой представляет собой обычный окисленный алюминий Al2O3, но не в виде мягкой аморфной микропленки, которая всегда присутствует на его поверхности, а как кристаллическая структура, по свойствам напоминающая корунд или шпинель.

Анодированная пленка отличается следующими характеристиками:

  • Микрокристаллическая структура;
  • Наличие огромного количества пор в поверхностном слое анодированной пленки и сверхплотная и прочная структура в основании;
  • Невероятно прочное сцепление окисленного слоя с металлом.

К сведению! При точном соблюдении технологического процесса четкой границы между металлом и анодированной пленкой не существует. Сложная сетка из микрокристалликов плавно переходит в металл без четко очерченной границы.

Что это означает? Это значит, что пленка из анодированного алюминия не отслоится от основы при любых нагрузках и через 40 лет, тогда как никелевое или лакокрасочное покрытие со временем медленно отслаивается от алюминиевой матрицы.

В зависимости от выбранных условий получения анодированной поверхности технология позволяет получить несколько вариантов защитного слоя.

Сверхтонкая окисленная пленка упорядоченной структуры при толщине в 10-25 мкм на поверхности алюминиевого зеркала даже не просматривается невооруженным глазом. Тем не менее, тончайший анодированный слой на алюминиевом зеркале дает возможность предохранять металл от окисления и одновременно пропускать до 95% светового потока.

Технология анодирования алюминия

Процесс получения защитных анодированных покрытий на поверхности алюминия основан на анодном окислении алюминия в растворе электролита. В зависимости от требуемого результата для анодированного окисления используют три вида электролитов:

  • Обработка малыми токами при постоянном напряжении в слабокислотном электролите;
  • Нанесение анодированного покрытия на бихроматно-кислотном электролите;
  • Окисление алюминия в щелочном электролите.

Во всех трех случаях происходит образование защитной пленки за счет окисления, уплотнения и превращения окисленного алюминия в плотную кристаллическую структуру. Получается покрытие, напоминающее стеклянные микрочешуйки.

К сведению! При этом габариты или внешние размеры детали не изменяются, покрытие из анодированного металла как бы растет вглубь алюминия до тех пор, пока образовавшаяся пленка не разорвет электрический контакт.

Меняя кислотность и температуру электролитической ванны, ток и рабочее напряжение на аноде и катоде, можно получать очень разные по свойствам пленки из анодированного алюминия. При небольшой величине тока образуется неуловимая глазу патина. Ее сложно ощутить, даже касаясь пальцами поверхности анодированного алюминия. Единственным признаком наличия защитной пленки является равномерный цвет металла и отсутствие эффекта пачкания рук.

Обычный алюминий под воздействием потожировых выделений кожи пальцев может растворяться с образованием алюминатов органических кислот. В результате чего на руках остаются темно-серые пятна. Поэтому большинство изделий из алюминия защищаются анодированием.

Суть процесса анодирования

Механизм образования на поверхности алюминия защитного покрытия основан на прямом превращении металла в окись с кристаллической структурой. Если просто закрепить на алюминиевой пластинке анод, катод зафиксировать на угольном электроде, подать напряжение и погрузить все это в кислотный или щелочной электролит, то анодной пленки не получится. Металл просто растворится в электролите.

Для того чтобы на поверхности алюминия образовалась кристаллическая пленка, требуется высокое напряжение и токи. Сам процесс образования анодированного слоя сопровождается большим выделением тепла, поэтому ванну с электролитом приходится охлаждать до нескольких градусов.

Процесс настолько интенсивный, что на пластине из алюминия вспыхивают микроскопические огоньки плазмы. Металл мгновенно расплавляется, окисляется, и давлением электролит прочно припечатывается к основанию. Поэтому-то на фотографии анодированная пленка выглядит, как крокодилья кожа. Подобный процесс можно относительно просто воспроизвести в домашних условиях, но, учитывая высокое напряжение более 100В и большие токи, кустарное получение анодированного алюминия является небезопасным. Кроме того, потребуется эффективная вентиляция для удаления испаряющегося электролита. Режимы работы установки по получению анодированного алюминия не являются секретом и давно опубликованы в технической литературе.

Практическое применение анодированного алюминия

Традиционно процесс анодирования используется для получения нескольких видов окисленных пленок:

  • Сверхтонкие микрокристаллические покрытия толщиной 20-25 мкм;
  • Декоративные пленки из анодированного алюминия;
  • Электрическая изоляция на основе кристаллической Al2O3;
  • Специальные защитные пленки толщиной 1,5-2,0 мм.

Полированный до состояния зеркала алюминий отражает до 98% светового потока, но уже через сутки из-за окисления образуется налет, который превращается в серую пленку. Большинство оптических приборов, оборудованных отражателями из полированного алюминия, защищаются сверхтонкой микрокристаллической пленкой из бесцветного корунда. Плотная беспористая структура надежно перекрывает доступ кислорода и водяных паров к легкоокисляющемуся алюминию, при этом сохраняется 95-97% светопропускания. Пленкой из анодированного алюминия защищены 99% всех фар, мощных фонарей, отражателей и оптических приборов.

Декоративные материалы

Покрытие из анодированного алюминия обладает достаточно интересной структурой. Наружные 35-50 мкм пленки представляют собой микропористую, как губка, поверхность с очень узкими и глубокими порами. Даже небольшой количество красителя глубоко проникает в анодированный алюминий, превращая его в очень прочное и одновременно яркое покрытие. Бесцветные микрокристаллы преломляют падающий на анодированное покрытие свет, в результате чего краски становятся яркими и насыщенными. Нанесенное лакокрасочное покрытие не выгорает и не теряет своей интенсивности.

Большую часть современных лакокрасочных материалов с эффектом иризации изготавливают путем добавления микроскопических чешуек с покрытием из окисленного алюминия. Тончайшая пленка из анодированного металла обеспечивает высокую стойкость наполнителя к воздействию ультрафиолета и органических растворителей, поэтому краска не теряет насыщенности в течение десятков лет.

Популярность покрытий возросла настолько, что металл напыляют на стальные и даже чугунные детали конструкций для последующего окисления и получения анодированной защиты. Вместо небезопасного покрытия из цинка или очень недешевых легированных сталей сегодня массово используется анодированный алюминий. Например, металлический фасад из стеклопакетов многоэтажного торгового центра пришлось бы ремонтировать уже через пять лет, а с анодированными алюминиевыми рамами конструкция может простоять несколько десятков лет.

Покрытия из кристаллической окиси металла серьезно потеснили наиболее стойкие порошковые и керамические краски, ранее массово применявшиеся для защиты фасадов и конструкционных элементов из алюминиевых сплавов.

Специальные пленки из анодированного алюминия

Помимо высоких декоративных качеств, пленки из анодированного алюминия обладают целым рядом очень полезных свойств. Например, высокая твердость и износостойкость. Микрокристаллическая структура из корунда практически не боится любого абразива. Песчаная и цементная пыль, и даже карбиды и силициды металлов не в состоянии существенно повредить защиту из корунда.

Поэтому детали с анодированным покрытием невозможно зачистить наждачной бумагой или полировочной или шлифовальной пастой. Толстый слой кристаллической Al2O3 на поверхности трущихся деталей увеличивает ресурс любого механизма в два-три раза. Защиту из окисленного алюминия используют при высокотемпературной окраске дисков колес, элементов подвески карьерных машин и магистральной техники.

Применение покрытия из анодированного алюминия:

  • Не деградирует под влиянием морозов, жары, ультрафиолета или химически активных веществ, выдерживает прямой контакт с кислотами, щелочами, органическими растворителями;
  • Не пылит и не изнашивается при многократной мойке, чистке, под истирающей нагрузкой;
  • Нет нитевидной и газовой формы коррозии, если слой анодированного алюминия изготовлен с соблюдением технологии, то срок службы покрытия может легко достичь 60-80 лет.

Второе интересное качество пленки из анодированного алюминия – низкая теплопроводность. Из обработанного металла изготавливают литейные формы для отливки из медных сплавов, при том, что температура алюминия ниже, чем у меди, на несколько сот градусов. Тонкое, всего в пару миллиметров окисленное покрытие надежно защищает алюминиевую форму от перегретой жидкой меди.

Радиаторы отопления, трубопроводная арматура, котлы, печи, камины, изготовленные из стали и чугуна, по современным стандартам защищаются пленками из анодированного алюминия. Даже при нагреве стенок, колосников, силовой арматуры до 500-600оС сталь и чугун не обгорают и не коррозируют до ржавых дыр. Срок службы стальной печи вырос с 10 до 40 лет службы.

Заключение

Применение тонких пленок кристаллической Al2O3 позволяет получить покрытия с совершенно новыми свойствами. Речь идет о том, что большинство металлических деталей и конструкций, и даже отдельные виды пластика можно обеспечить практически «вечными» покрытиями. Даже если вследствие удара или скола пленка будет повреждена, ее вполне можно восстановить с помощью простейшей процедуры. Пока что окисленный металл обходится дороже краски, поэтому используется, как декоративный материал и способ защитить металлическую поверхность в экстремальных условиях эксплуатации.

Отправить комментарий

Анодированный алюминий — что это такое? Как анодировать профиль?

Алюминий сам по себе в обычных атмосферных условиях покрывается оксидной пленкой. Это естественный процесс под влиянием кислорода. Практически использовать его невозможно, так как пленка слишком тонка, почти виртуальна. Но было замечено, что она обладает кое-какими замечательными свойствами, которые заинтересовали инженеров и ученых. Позже они смогли получать анодированный алюминий химическим способом.

Оксидная пленка тверже самого алюминия, а значит, защищает его от внешних воздействий. Износостойкость у деталей из алюминия с оксидной пленкой значительно выше. Кроме того, на покрытую поверхность гораздо лучше ложатся органические красители, следовательно, она имеет более пористую структуру, что повышает адгезию. А это очень важно для изделий с последующей декоративной обработкой.

Так, инженерные исследования и опыты привели к изобретению способа электрохимического образования оксидной пленки на поверхности алюминия и его сплавов, который получил название анодное оксидирование алюминия, – это ответ на вопрос «что такое анодирование».

Анодированный алюминий очень широко применяется в различных областях. Галантерейные изделия с декоративными покрытиями, металлические оконные и дверные рамы, детали морских кораблей и подводных аппаратов, авиационная промышленность, кухонная посуда, автомобильный тюнинг, строительные изделия из алюминиевого профиля – далеко не полный перечень.

Что такое анодирование

Анодирование фасадного профиля в специальной гальванической ваннеКак анодировать алюминий? Анодирование- это такой процесс, при котором получают слой оксидной пленки на поверхности алюминиевой детали. В электрохимическом процессе покрываемая деталь играет роль анода, поэтому процесс и называется анодированием. Самый распространенный и простой способ – в разбавленной серной кислоте под воздействием электрического тока. Концентрация кислоты до 20 %, сила постоянного тока 1,0 – 2,5 А/дм 2, переменного – 3,0 А/дм 2, температура раствора 20 – 22 °С.

Раз есть анод, должен быть катод. В специальной гальванической ванне, где происходит процесс анодирования, детали-аноды закреплены или подвешены посредине. По краям ванны размещаются катоды – пластины свинца или химически чистого алюминия, причем площадь поверхностей анодов должна примерно соответствовать площади катодов. Между катодами и анодами должен обязательно находиться свободный довольно широкий слой электролита.

Подвески, на которых крепятся покрываемые детали, желательно выполнять из того же материала, из которого изготовлены аноды. Не всегда это возможно, поэтому допускаются алюминиевые или дюралевые сплавы. В местах крепления анодов должен быть обеспечен плотный контакт. Места креплений остаются непокрытыми, поэтому для декоративных изделий эти места необходимо выбирать и оговаривать в технологическом процессе. Подвески не снимаются при промывке и последующем хроматировании, они так и остаются на деталях до окончания всего процесса.

Время зависит от размеров покрываемых деталей. Мелкие получают слой пленки 4–5 микрон уже через 15–20 минут, а более крупные висят в ванне до 1 часа.

После извлечения из анодной ванны детали промывают в проточной воде, затем нейтрализуют в отдельной ванне с 5-процентным раствором аммиака и снова промывают в водопроводной воде.

Пленка станет более прочной, если провести дополнительно финишную обработку. Лучше всего это сделать в растворе бихромата калия (хромпик) концентрацией примерно 40 г/л при температуре около 95 °С, в течение 10–30 минут. Детали в конце приобретают оригинальный зеленовато-желтый оттенок. Таким образом достигается анодная защита от коррозии.

Применение других электролитов для получения анодированного алюминия

Есть и другие электролиты для получения оксидной пленки на алюминии, основы процесса анодирования остаются те же, меняются лишь режимы тока, время процесса и свойства покрытия.

  • Щавелевокислый электролит. Это раствор щавелевой кислоты 40–60 г/л. В результате анодирования пленка выходит желтоватого цвета, имеет достаточную прочность и отличную пластичность. При изгибании покрытой поверхности слышен характерный треск пленки, но свойства она от этого не теряет. Недостатком является слабая пористость и ухудшенная адгезия по сравнению с сернокислым электролитом.
  • Ортофосфорный электролит. Раствор ортофосфорной кислоты 350–550 г/л. Получаемая пленка очень плохо окрашивается, зато отлично растворяется в никелевом и кислом медном электролите при осаждении этих металлов, то есть применяется в основном как промежуточный этап перед омеднением или никелированием.
  • Хромовый электролит. Раствор хромового ангидрида 30–35 г/л и борной кислоты 1–2 г/л. Полученная пленка имеет красивый серо-голубой цвет и похожа на эмалированную поверхность, процесс получил отсюда название эматалирования. В настоящее время эматалирование очень широко применяется и имеет ряд других вариантов состава электролита, на основе других кислот.
  • Смешанный органический электролит. Раствор содержит щавелевую, серную и сульфосалициловую кислоты. Цвет пленки отличается в зависимости от марки сплава анода, характеристики покрытия по прочности и износостойкости очень хорошие. Анодировать в данном электролите можно не менее успешно алюминиевые детали любого назначения.

Преимущества применения алюминиевого анодированного профиля

Анодированный алюминиевый профиль применяется для изготовления навесных вентилируемых фасадов, монтажных лестниц, поручней. Защитная пленка не только защищает сам металл, но и ваши руки от серой алюминиевой пыли. Женщинам интересно будет узнать, что алюминиевые вязальные спицы тоже анодируют, чтобы не пачкались ручки мастерицы. Но и в строительстве анодированный алюминий получил свое применение.

Анодирование алюминиевого профиля используют при монтаже навесных вентилируемых фасадов в высоко- агрессивных средах. Высоко- агрессивные среды- это приморские районы ( из-за высокого содержания солей в воздухе) или территории вблизи заводов. Города миллионники редко имеют высоко- агрессивную среду, чаще средне- агрессивную. Присвоение класса агрессивности происходит на уровне специальных служб сан-эпидемического надзора по согласованию с администрацией города – нужно искать в их постановлениях.

применение анодированного профиля в высокоагрессивных средах

Еще одно важное преимущество – окраска анодированной поверхности. Наверное, это основной плюс описанного процесса. Появилась возможность декоративной обработки изготовленных алюминиевых изделий, что сразу принесло к большому распространению его применения.

Высокая износостойкость анодной пленки способствовала увеличению содержания анодированных алюминиевых деталей в общем объеме судостроительных и авиастроительных предприятий.

системы нвф из анадированного алюминя использовали при строительстве олимпийских объектов в Сочи

Фасады многих Олимпийских объектов в Сочи выполнены с помощью технологии Навесной Вентилируемый Фасад на алюминиевых анодированных системах.

Похожие статьи

Анодированный алюминий: применение, методики анодирования

Анодирование — это электрохимический метод изменения поверхности металлов. Он защищает от коррозии, улучшает эстетичный вид, противостоит царапинам и является одним из самых долговечных покрытий узлов и деталей. Анодирование может быть выполнено для целого ряда материалов, но больше всего он применим для алюминия. Анодированный алюминий имеет высокие антикоррозионные и износостойкие свойства, поскольку в этом процессе повышается твердость, улучшается смазывающая способность и адгезия, а также цветовое оформление.

Что такое анодирование?

Для того чтобы подготовить алюминий к анодированию, поверхность сначала тщательно очищают и ополаскивают, а затем помещают в ванну с некоторым раствором электролита, таким как серная кислота. Он представляет собой электропроводящий раствор с большим количеством положительных и отрицательных ионов, которыми он будет обмениваться.

Положительный электрический заряд поступает к алюминию — аноду, а отрицательный заряд – к пластинам, размещенным в электролите. Электроток в этой цепи заставляет положительные частицы притягиваться к отрицательным пластинам, а отрицательные частицы движутся к алюминиевой детали.

Электрохимическая реакция вызывает образование пор на поверхности, когда избыток положительных ионов уходит. Эти поры образуют геометрически правильную структуру и начинают разрушаться в субстрат. Al на поверхности соединяется с отрицательно заряженными ионами O2, образуя оксид алюминия. Это называется барьерным слоем, который является защитой от химических реакций в этих местах. При подаче электрического тока создается регулярная структура пористости поверхности.

Чем дольше применяется ток, тем больше проникновение в эти столбцы. Для типичных не жестких покрытий глубина может составлять до 10 мкм. Как только этот уровень достигнут, и если цвет не требуется, процесс останавливается, и поверхность может быть запечатана простым промыванием в воде. В результате будет получена деталь с твердым, натуральным покрытием из Al2O3, способным противостоять химическому воздействию и очень устойчивая к царапинам. Al2O3 оценивается 9 из 10 по шкале твердости по Моосу, что означает второе место после алмаза и делает детали, например, посуду из анодированного алюминия, очень крепкой и долговечной.

Анодированный алюминий, полученный в домашних условияхАнодированный алюминий зеркальный и фактурный

Показания к анодированию алюминия

Хотя большинство марок Al имеют хороший внешний вид и коррозионную стойкость во многих случаях, иногда требуется дальнейшее повышение этих свойств. Это может быть достигнуто с помощью вышеназванного процесса. Следующие сплавы лучше всего подходят для получения анодированного алюминия:

  • 5XXX серия;
  • 6XXX серия;
  • 7XXX серия.

Покрытие из оксида алюминия может не иметь требуемой степени защиты на некоторых сплавах. Кроме того, они могут иметь слой оксида алюминия после процесса анодирования, который оставляет нежелательный цвет, такой как непривлекательный желтый, коричневый или темно-серый.

Несмотря на то, что существуют некоторые вариации от каждого сплава к сплаву, вот краткий анализ анодирования по типу серии:

  1. 1XXX – эта серия покрывает чистый Al. Он в этой серии может быть анодирован. Образующийся слой оксида алюминия, который образуется, является прозрачным и несколько блестящим. Поскольку нижележащий чистый Al является относительно мягким, обработанные предметы могут быть легко повреждены и не иметь механических свойств по сравнению с другими сериями Al-сплавов.
  2. 2XXX – эта серия используется для обозначения Al, легированного медью. Медь в этих сплавах создает очень прочный и твердый Al -сплав. Хотя медь полезна для улучшения механических свойств Al, она, к сожалению, делает эти сплавы плохими кандидатами на анодирование, матовый цвет не дает привлекательности таким изделиям.
  3. 3XXX – эта серия листового алюминия, легированного марганцем. В то время как анодированный слой обеспечивает достойную защиту Al подложки из марганца, он создает нежелательный коричневый цвет.
  4. 4XXX – эта серия состоит из Al, легированного кремнием. Анодированный материал 4XXX хорошо защищен слоем оксида алюминия, созданным в процессе анодирования. Тем не менее, важно отметить, что серия 4XXX имеет темно-серый, почти черный цвет, которому не хватает эстетической привлекательности.
  5. 5XXX – эта серия обозначает Al, который легирован марганцем. При анодировании сплавы 5XXX имеют в результате оксидный слой, который является прочным. Они превосходные кандидаты на анодирование, тем не менее, некоторые легирующие элементы, такие как марганец и кремний, должны находиться в пределах установленного диапазона для нормального протекания процесса анодирования.
  6. 6XXX – эта серия была создана для Al, легированного магнием и кремнием. Эти сплавы являются отличными кандидатами для процесса, полученный оксидный слой прозрачен и обеспечивает превосходную защиту. Поскольку сплавы 6XXX обладают отличными механическими свойствами и легко анодируются — алюминий анодированный данной серии часто применяется для конструкционных проектов.
  7. 7XXX – эта серия легированного Al использует цинк в качестве основного легирующего элемента. Очень хорошо подходит для процесса анодирования. Последующий оксидный слой прозрачен и обеспечивает отличную защиту. Если уровень цинка становится чрезмерным, оксидный слой, может стать коричневым.
Анодированный алюминий, полученный в домашних условияхАнодированный алюминий “под золото” и “под серебро”

Методики и технология анодирования

Существует несколько видов анодирования Al, каждый из которых имеет уникальное анодное покрытие:

  1. Стандартное анодирование, более известное как тип II, основано на военной спецификации MIL-A-8625.
  2. Жесткое анодирование в твердом покрытии, также известное как тип III, использует процесс, аналогичный типу II, но приводит к получению гораздо более толстого и плотного покрытия, что значительно повышает стойкость к истиранию и коррозии. Твердое анодирование создает очень толстое твердое покрытие, которое проникает в обработанный алюминий — половина защитного оксидного слоя проникает в поверхность, а другая половина накапливается на ней.
  3. Микрокристаллическое анодирование улучшает другие процессы, создавая покрытие с молекулами, упакованными в регулярно упорядоченный повторяющийся узор, поскольку молекулы располагаются случайным образом. Микрокристаллические анодно-алюминиевые покрытия также обеспечивают более высокую термодинамическую стабильность, чем другие, а также более низкую степень растворимости при воздействии агрессивных химикатов.

Растворы анодирования хорошо известны благодаря образованию пор в покрытии Al. Эти поры поглощают красители, а также сохраняют смазки, если таковые имеются. Кроме того, они обеспечивают участки, через которые металл может легко подвергаться коррозии. Для повышения коррозионной стойкости и удержания красителя обычно применяется уплотнение. Несколько методов уплотнения, которые используются, включают использование теплого и холодного анодирования.

Теплое анодирование

Метод теплого анодирования, включает длительное погружение Al в кипящую горячую воду, которая была деионизирована или находится в форме пара. Этот метод не очень дорогой, так как он снижает износостойкость только на 20 процентов. Оксид превращается в гидратированную форму, и в результате набухание снижает поверхностную пористость.

Альтернативой первому методу является никель фторидный метод, который, хотя и предотвращают коррозию, но делает анодированный Al более мягким. Этот процесс холодной сварки, включающий добавление фторидного никеля к анодированному Al. Ионы фтора попадают в поры, которые служат местом для механизма обмена. Попадая в поры, ионы вызывают сдвиг рН и осаждение ионов никеля. Образующийся гидроксид никеля затем блокирует устье пор, эффективно герметизируя пленку. Далее происходит медленный этап, при котором вода из атмосферы диффундирует в пленку, вызывая блокирование пор, и в конечном итоге получается эффективная герметизирующая пленка.

Для лучшей устойчивости к коррозии и засолению анодные, покрытия обычно герметизируют 5-процентным раствором дихромата калия. Растворы работают при температуре кипения, и погружение происходит примерно на 15 минут. При рН около 5-6 происходит поглощение хромат-ионов, что обеспечивает гидратацию покрытия. Герметики с дихроматным покрытием не так устойчивы к окрашиванию по сравнению с другими методами герметиков.

Анодированные алюминиевые болты Анодированные алюминиевые болты разных цветов

Холодное анодирование

Комнатная температура или холодное уплотнение дает преимущество перед предыдущими уплотнениями, потому что оно работает при 18-20 С. Хотя это снижает стоимость энергии для уплотнения, оно отличается от высокотемпературных и среднетемпературных уплотнений. Типичные составы химического состава для холодного запечатывания основаны на никель-фторидной основе, которая служит для закупоривания пор при одновременном травлении поверхности анодного покрытия. Это действует как метод очистки для улучшения сцепления и адгезии, уменьшая при этом тенденцию к образованию пыльной структуры. Контроль холодного уплотнения является более сложной задачей, чем уплотнения горячей воды, и иногда требуется промывка горячей водой после уплотнения, чтобы помочь вылечить уплотнение и обеспечить немедленное тестирование качества.

Процессы холодной герметизации совершенствуются, чтобы соответствовать стандарту автомобильной промышленности для герметизации с высокой щелочной стойкостью при pH 13,5, что всегда было проблемой анодированных поверхностей, подверженных воздействию химических жидкостей во время мойки автомобилей.

Применение анодированного алюминия

Анодирование не только увеличивает долговечность Al -листа, но и повышает визуальную привлекательность. Слои оксида, добавленные путем анодирования, улучшают поверхность Al для красителей, клеев и красок. Эта способность обеспечивает превосходный внешний вид изображения с постоянным качеством.

Использование для анодированного алюминия:

  • наружный металлический каркас на зданиях;
  • посуда из анодированного алюминия премиум-класса;
  • материал каркаса для уличной мебели и декоративных элементов;
  • защитный корпус для современных компьютерных систем;
  • защитный корпус для современной бытовой техники;
  • шильдики из анодированного алюминия.
технологияТехнология анодирования алюминия в домашних условиях

Анодирование алюминия в домашних условиях

Анодирование в домашних условиях может быть полезным для таких проектов, как защита металлических семейных реликвий, старых украшений или если нужно получить посуду из анодированного алюминия.

Во время этого процесса требуется выполнять все меры предосторожности при работе с опасными химическими веществами, такими как щелочь и серная кислота, поскольку они могут вызвать химические ожоги при неправильном обращении.

Алгоритм изготовления посуды из анодированного алюминия в домашних условиях:

  1. Для начала выбирают небольшие алюминиевые предметы, например, ложки или чашки, которые будут погружаться в небольшое количество кислоты, во время процесса они выполняют роль анода.
  2. Подбирают пластиковую ванну необходимого объема, чтобы детали были полностью покрыты раствором. Конструкция должна быть твердая и долговечная.
  3. Приобретают краску для одежды в любом магазине, например, в Москве в отделах химтоваров. Во время процесса анодирования можно покрасить металл практически в любой цвет с помощью стандартного тканевого красителя от желтого до черного. Это процесс, который Apple использует для окраски iPod. Так же можно купить специальный краситель для анодирования, который дает лучшие результаты.
  4. Приобретают предметы, необходимые для анодирования: обезжириватель,
    два свинцовых катода достаточно длинных, рулон алюминиевой проволоки,
    дистиллированная вода, пищевая сода, резиновые перчатки. Для анодирования понадобится 5л серной кислоты (аккумуляторной кислоты), щелочи и постоянный источник питания не менее 20 вольт, который должен работать, как постоянный источник питания.
  5. Проводят очистку детали с мылом и водой, а затем обезжиривание.
  6. Разводят щелочь в воде, чтобы создать чистящий раствор. В небольшой пластиковой ванне смешивают 44 мл щелочи в 3,8 л дистиллированной воды.
    Надев резиновые перчатки, помещают предмет в раствор и оставляют на 3 минуты, затем снимают и тщательно промывают теплой водой.
  7. Устанавливают на куске фанеры анодирующую ванну в хорошо проветриваемом помещении. Гараж с открытой дверью или сарай с открытыми дверями и окнами обычно подходит для этого процесса. Температура в помещении должна быть 16 до 22 С.
  8. Включают источник питания на невоспламеняющемся материале, например, бетон.
  9. Подключают положительный провод от зарядного устройства к алюминию, а отрицательный к алюминиевому проводу, подключенному к 2 свинцовым катодам.
    Устанавливают свинцовый катод на каждой стороне резервуара. Проводят алюминиевую проволоку между катодами и соединяют их вместе на маленькой деревянной доске. Убеждаются, что провод, соединяющий анод, не касается свинцовых катодов.
  10. Делают 1: 1 смесь дистиллированной воды и аккумуляторной кислоты в пластиковой ванне, предварительно надев маску или респиратор. Во время работы должна функционировать приточно–вытяжная вентиляция. Сначала наливают воду, затем очень тонкой струйкой кислоту. Если случайна пролита кислота, место нужно обработать пищевой содой.
  11. Подключают алюминиевые провода к источнику питания (ИП). Провод, который ведет от анода, должен подключаться к положительной клемме на ИП. Провод, идущий от выводных катодов, должен подключаться к отрицательной клемме ИП
    Включают источник питания. Режим анодирования 12 ампер на каждые 0,09 квадратных метров материала, время – 45 минут. Процесс сопровождается выделением пузырьков окисления. Анод также начнет менять цвет, становясь коричневым, затем желтым.
  12. После получения посуды из анодированного алюминия, отключают источник тока, промывают деталь дистиллированной водой и помещают ее в теплую ванну с красителем на 15 минут.

Можно проводить процесс без окрашивания, тогда переходят к кипячению детали в дистиллированной воде в течение 30 минут.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *